123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import json
- import os
- from typing import List, Union
- import fire
- import torch
- from tqdm import tqdm
- from transformers import LlamaForCausalLM # @manual
- NUM_SHARDS = {
- "7B": 1,
- "13B": 2,
- "34B": 4,
- "30B": 4,
- "65B": 8,
- "70B": 8,
- }
- def write_model(model_path, model_size, output_base_path):
- dtype = torch.bfloat16
- params = json.load(open(os.path.join(output_base_path, "params.json"), "r"))
- num_shards = NUM_SHARDS[model_size]
- n_layers = params["n_layers"]
- n_heads = params["n_heads"]
- n_heads_per_shard = n_heads // num_shards
- dim = params["dim"]
- dims_per_head = dim // n_heads
- base = 10000.0
- inv_freq = (
- 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
- ).to(dtype)
- if "n_kv_heads" in params:
- num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
- num_local_key_value_heads = n_heads_per_shard // num_key_value_heads
- key_value_dim = dim // num_key_value_heads
- else: # compatibility with other checkpoints
- num_key_value_heads = n_heads
- num_local_key_value_heads = n_heads_per_shard
- key_value_dim = dim
- model = LlamaForCausalLM.from_pretrained(
- model_path,
- torch_dtype=dtype,
- low_cpu_mem_usage=True,
- )
- loaded = model.state_dict()
- # permute for sliced rotary
- def permute(w, n_heads=n_heads, dim1=dim, dim2=dim):
- return (
- w.view(n_heads, 2, dim1 // n_heads // 2, dim2)
- .transpose(1, 2)
- .reshape(dim1, dim2)
- )
- state_dict = [{} for _ in range(num_shards)]
- def insert(name: str, tensor: Union[List, torch.Tensor]):
- for i in range(num_shards):
- state_dict[i][name] = (
- tensor[i].clone() if isinstance(tensor, list) else tensor
- )
- def insert_chunk(name: str, tensor: torch.Tensor, dim: int):
- tensors = tensor.chunk(num_shards, dim=dim)
- for i, tensor in enumerate(tensors):
- state_dict[i][name] = tensor.clone()
- insert_chunk("tok_embeddings.weight", loaded["model.embed_tokens.weight"], 1)
- insert("norm.weight", loaded["model.norm.weight"])
- insert_chunk("output.weight", loaded["lm_head.weight"], 0)
- for layer_i in tqdm(range(n_layers), desc="Converting layers"):
- ts = (
- permute(loaded[f"model.layers.{layer_i}.self_attn.q_proj.weight"])
- .view(n_heads_per_shard * num_shards, dims_per_head, dim)
- .chunk(num_shards, dim=0)
- )
- insert(f"layers.{layer_i}.attention.wq.weight", [t.view(-1, dim) for t in ts])
- ts = (
- permute(
- loaded[f"model.layers.{layer_i}.self_attn.k_proj.weight"],
- num_key_value_heads,
- key_value_dim,
- dim,
- )
- .view(num_local_key_value_heads * num_shards, dims_per_head, dim)
- .chunk(num_shards, dim=0)
- )
- insert(f"layers.{layer_i}.attention.wk.weight", [t.view(-1, dim) for t in ts])
- ts = (
- loaded[f"model.layers.{layer_i}.self_attn.v_proj.weight"]
- .view(num_local_key_value_heads * num_shards, dims_per_head, dim)
- .chunk(num_shards, dim=0)
- )
- insert(f"layers.{layer_i}.attention.wv.weight", [t.view(-1, dim) for t in ts])
- insert_chunk(
- f"layers.{layer_i}.attention.wo.weight",
- loaded[f"model.layers.{layer_i}.self_attn.o_proj.weight"],
- 1,
- )
- insert_chunk(
- f"layers.{layer_i}.feed_forward.w1.weight",
- loaded[f"model.layers.{layer_i}.mlp.gate_proj.weight"],
- 0,
- )
- insert_chunk(
- f"layers.{layer_i}.feed_forward.w2.weight",
- loaded[f"model.layers.{layer_i}.mlp.down_proj.weight"],
- 1,
- )
- insert_chunk(
- f"layers.{layer_i}.feed_forward.w3.weight",
- loaded[f"model.layers.{layer_i}.mlp.up_proj.weight"],
- 0,
- )
- insert(
- f"layers.{layer_i}.attention_norm.weight",
- loaded[f"model.layers.{layer_i}.input_layernorm.weight"],
- )
- insert(
- f"layers.{layer_i}.ffn_norm.weight",
- loaded[f"model.layers.{layer_i}.post_attention_layernorm.weight"],
- )
- insert("rope.freqs", inv_freq)
- for i in tqdm(range(num_shards), desc="Saving checkpoint shards"):
- torch.save(
- state_dict[i], os.path.join(output_base_path, f"consolidated.{i:02d}.pth")
- )
- def main(
- model_path: str,
- model_size: str,
- output_dir: str,
- ):
- """Convert llama weights from huggingface format to consolidated format.
- params:
- model_path: model name or path to the model directory.
- model_size: Llama model size, one of 7B, 13B, 34B, 30B, 65B, 70B.
- output_dir: directory to save Llama weights, should contains params.json.
- """
- assert model_size in NUM_SHARDS, f"Unknown model size {model_size}"
- params_path = os.path.join(output_dir, "params.json")
- assert os.path.isfile(params_path), f"{params_path} does not exist"
- write_model(model_path, model_size, output_dir)
- if __name__ == "__main__":
- fire.Fire(main)
|