# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import json import os from typing import List, Union import fire import torch from tqdm import tqdm from transformers import LlamaForCausalLM # @manual NUM_SHARDS = { "7B": 1, "13B": 2, "34B": 4, "30B": 4, "65B": 8, "70B": 8, } def write_model(model_path, model_size, output_base_path): dtype = torch.bfloat16 params = json.load(open(os.path.join(output_base_path, "params.json"), "r")) num_shards = NUM_SHARDS[model_size] n_layers = params["n_layers"] n_heads = params["n_heads"] n_heads_per_shard = n_heads // num_shards dim = params["dim"] dims_per_head = dim // n_heads base = 10000.0 inv_freq = ( 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) ).to(dtype) if "n_kv_heads" in params: num_key_value_heads = params["n_kv_heads"] # for GQA / MQA num_local_key_value_heads = n_heads_per_shard // num_key_value_heads key_value_dim = dim // num_key_value_heads else: # compatibility with other checkpoints num_key_value_heads = n_heads num_local_key_value_heads = n_heads_per_shard key_value_dim = dim model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=dtype, low_cpu_mem_usage=True, ) loaded = model.state_dict() # permute for sliced rotary def permute(w, n_heads=n_heads, dim1=dim, dim2=dim): return ( w.view(n_heads, 2, dim1 // n_heads // 2, dim2) .transpose(1, 2) .reshape(dim1, dim2) ) state_dict = [{} for _ in range(num_shards)] def insert(name: str, tensor: Union[List, torch.Tensor]): for i in range(num_shards): state_dict[i][name] = ( tensor[i].clone() if isinstance(tensor, list) else tensor ) def insert_chunk(name: str, tensor: torch.Tensor, dim: int): tensors = tensor.chunk(num_shards, dim=dim) for i, tensor in enumerate(tensors): state_dict[i][name] = tensor.clone() insert_chunk("tok_embeddings.weight", loaded["model.embed_tokens.weight"], 1) insert("norm.weight", loaded["model.norm.weight"]) insert_chunk("output.weight", loaded["lm_head.weight"], 0) for layer_i in tqdm(range(n_layers), desc="Converting layers"): ts = ( permute(loaded[f"model.layers.{layer_i}.self_attn.q_proj.weight"]) .view(n_heads_per_shard * num_shards, dims_per_head, dim) .chunk(num_shards, dim=0) ) insert(f"layers.{layer_i}.attention.wq.weight", [t.view(-1, dim) for t in ts]) ts = ( permute( loaded[f"model.layers.{layer_i}.self_attn.k_proj.weight"], num_key_value_heads, key_value_dim, dim, ) .view(num_local_key_value_heads * num_shards, dims_per_head, dim) .chunk(num_shards, dim=0) ) insert(f"layers.{layer_i}.attention.wk.weight", [t.view(-1, dim) for t in ts]) ts = ( loaded[f"model.layers.{layer_i}.self_attn.v_proj.weight"] .view(num_local_key_value_heads * num_shards, dims_per_head, dim) .chunk(num_shards, dim=0) ) insert(f"layers.{layer_i}.attention.wv.weight", [t.view(-1, dim) for t in ts]) insert_chunk( f"layers.{layer_i}.attention.wo.weight", loaded[f"model.layers.{layer_i}.self_attn.o_proj.weight"], 1, ) insert_chunk( f"layers.{layer_i}.feed_forward.w1.weight", loaded[f"model.layers.{layer_i}.mlp.gate_proj.weight"], 0, ) insert_chunk( f"layers.{layer_i}.feed_forward.w2.weight", loaded[f"model.layers.{layer_i}.mlp.down_proj.weight"], 1, ) insert_chunk( f"layers.{layer_i}.feed_forward.w3.weight", loaded[f"model.layers.{layer_i}.mlp.up_proj.weight"], 0, ) insert( f"layers.{layer_i}.attention_norm.weight", loaded[f"model.layers.{layer_i}.input_layernorm.weight"], ) insert( f"layers.{layer_i}.ffn_norm.weight", loaded[f"model.layers.{layer_i}.post_attention_layernorm.weight"], ) insert("rope.freqs", inv_freq) for i in tqdm(range(num_shards), desc="Saving checkpoint shards"): torch.save( state_dict[i], os.path.join(output_base_path, f"consolidated.{i:02d}.pth") ) def main( model_path: str, model_size: str, output_dir: str, ): """Convert llama weights from huggingface format to consolidated format. params: model_path: model name or path to the model directory. model_size: Llama model size, one of 7B, 13B, 34B, 30B, 65B, 70B. output_dir: directory to save Llama weights, should contains params.json. """ assert model_size in NUM_SHARDS, f"Unknown model size {model_size}" params_path = os.path.join(output_dir, "params.json") assert os.path.isfile(params_path), f"{params_path} does not exist" write_model(model_path, model_size, output_dir) if __name__ == "__main__": fire.Fire(main)