test_samsum_datasets.py 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. from unittest.mock import patch
  4. from transformers import LlamaTokenizer
  5. @patch('llama_recipes.finetuning.train')
  6. @patch('llama_recipes.finetuning.LlamaTokenizer')
  7. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  8. @patch('llama_recipes.finetuning.optim.AdamW')
  9. @patch('llama_recipes.finetuning.StepLR')
  10. def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker):
  11. from llama_recipes.finetuning import main
  12. #Align with Llama 2 tokenizer
  13. tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
  14. tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>'})
  15. tokenizer.from_pretrained.return_value.bos_token_id = 1
  16. tokenizer.from_pretrained.return_value.eos_token_id = 2
  17. BATCH_SIZE = 8
  18. kwargs = {
  19. "model_name": "decapoda-research/llama-7b-hf",
  20. "batch_size_training": 8,
  21. "val_batch_size": 1,
  22. "use_peft": False,
  23. "dataset": "samsum_dataset",
  24. "batching_strategy": "padding",
  25. }
  26. main(**kwargs)
  27. assert train.call_count == 1
  28. args, kwargs = train.call_args
  29. train_dataloader = args[1]
  30. eval_dataloader = args[2]
  31. VAL_SAMPLES = 818
  32. TRAIN_SAMPLES = 14732
  33. assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
  34. assert len(eval_dataloader) == VAL_SAMPLES
  35. batch = next(iter(train_dataloader))
  36. assert "labels" in batch.keys()
  37. assert "input_ids" in batch.keys()
  38. assert "attention_mask" in batch.keys()
  39. assert batch["labels"][0][268] == -100
  40. assert batch["labels"][0][269] == 22291
  41. assert batch["input_ids"][0][0] == 1
  42. assert batch["labels"][0][-1] == 2
  43. assert batch["input_ids"][0][-1] == 2
  44. @patch('llama_recipes.finetuning.train')
  45. @patch('llama_recipes.finetuning.LlamaTokenizer')
  46. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  47. @patch('llama_recipes.finetuning.optim.AdamW')
  48. @patch('llama_recipes.finetuning.StepLR')
  49. def test_samsum_dataset_packing(step_lr, optimizer, get_model, tokenizer, train, mocker):
  50. from llama_recipes.finetuning import main
  51. #Align with Llama 2 tokenizer
  52. tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
  53. tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>'})
  54. tokenizer.from_pretrained.return_value.bos_token_id = 1
  55. tokenizer.from_pretrained.return_value.eos_token_id = 2
  56. BATCH_SIZE = 8
  57. kwargs = {
  58. "model_name": "decapoda-research/llama-7b-hf",
  59. "batch_size_training": 8,
  60. "val_batch_size": 1,
  61. "use_peft": False,
  62. "dataset": "samsum_dataset",
  63. "batching_strategy": "packing",
  64. }
  65. main(**kwargs)
  66. assert train.call_count == 1
  67. args, kwargs = train.call_args
  68. train_dataloader = args[1]
  69. eval_dataloader = args[2]
  70. assert len(train_dataloader) == 96
  71. assert len(eval_dataloader) == 42
  72. batch = next(iter(train_dataloader))
  73. assert "labels" in batch.keys()
  74. assert "input_ids" in batch.keys()
  75. assert "attention_mask" in batch.keys()
  76. assert batch["labels"][0].size(0) == 4096
  77. assert batch["input_ids"][0].size(0) == 4096
  78. assert batch["attention_mask"][0].size(0) == 4096