# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
from unittest.mock import patch
from transformers import LlamaTokenizer
@patch('llama_recipes.finetuning.train')
@patch('llama_recipes.finetuning.LlamaTokenizer')
@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
@patch('llama_recipes.finetuning.optim.AdamW')
@patch('llama_recipes.finetuning.StepLR')
def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker):
from llama_recipes.finetuning import main
#Align with Llama 2 tokenizer
tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '', 'eos_token': ''})
tokenizer.from_pretrained.return_value.bos_token_id = 1
tokenizer.from_pretrained.return_value.eos_token_id = 2
BATCH_SIZE = 8
kwargs = {
"model_name": "decapoda-research/llama-7b-hf",
"batch_size_training": 8,
"val_batch_size": 1,
"use_peft": False,
"dataset": "samsum_dataset",
"batching_strategy": "padding",
}
main(**kwargs)
assert train.call_count == 1
args, kwargs = train.call_args
train_dataloader = args[1]
eval_dataloader = args[2]
VAL_SAMPLES = 818
TRAIN_SAMPLES = 14732
assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
assert len(eval_dataloader) == VAL_SAMPLES
batch = next(iter(train_dataloader))
assert "labels" in batch.keys()
assert "input_ids" in batch.keys()
assert "attention_mask" in batch.keys()
assert batch["labels"][0][268] == -100
assert batch["labels"][0][269] == 22291
assert batch["input_ids"][0][0] == 1
assert batch["labels"][0][-1] == 2
assert batch["input_ids"][0][-1] == 2
@patch('llama_recipes.finetuning.train')
@patch('llama_recipes.finetuning.LlamaTokenizer')
@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
@patch('llama_recipes.finetuning.optim.AdamW')
@patch('llama_recipes.finetuning.StepLR')
def test_samsum_dataset_packing(step_lr, optimizer, get_model, tokenizer, train, mocker):
from llama_recipes.finetuning import main
#Align with Llama 2 tokenizer
tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '', 'eos_token': ''})
tokenizer.from_pretrained.return_value.bos_token_id = 1
tokenizer.from_pretrained.return_value.eos_token_id = 2
BATCH_SIZE = 8
kwargs = {
"model_name": "decapoda-research/llama-7b-hf",
"batch_size_training": 8,
"val_batch_size": 1,
"use_peft": False,
"dataset": "samsum_dataset",
"batching_strategy": "packing",
}
main(**kwargs)
assert train.call_count == 1
args, kwargs = train.call_args
train_dataloader = args[1]
eval_dataloader = args[2]
assert len(train_dataloader) == 96
assert len(eval_dataloader) == 42
batch = next(iter(train_dataloader))
assert "labels" in batch.keys()
assert "input_ids" in batch.keys()
assert "attention_mask" in batch.keys()
assert batch["labels"][0].size(0) == 4096
assert batch["input_ids"][0].size(0) == 4096
assert batch["attention_mask"][0].size(0) == 4096