# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from unittest.mock import patch from transformers import LlamaTokenizer @patch('llama_recipes.finetuning.train') @patch('llama_recipes.finetuning.LlamaTokenizer') @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained') @patch('llama_recipes.finetuning.optim.AdamW') @patch('llama_recipes.finetuning.StepLR') def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker): from llama_recipes.finetuning import main #Align with Llama 2 tokenizer tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '', 'eos_token': ''}) tokenizer.from_pretrained.return_value.bos_token_id = 1 tokenizer.from_pretrained.return_value.eos_token_id = 2 BATCH_SIZE = 8 kwargs = { "model_name": "decapoda-research/llama-7b-hf", "batch_size_training": 8, "val_batch_size": 1, "use_peft": False, "dataset": "samsum_dataset", "batching_strategy": "padding", } main(**kwargs) assert train.call_count == 1 args, kwargs = train.call_args train_dataloader = args[1] eval_dataloader = args[2] VAL_SAMPLES = 818 TRAIN_SAMPLES = 14732 assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE assert len(eval_dataloader) == VAL_SAMPLES batch = next(iter(train_dataloader)) assert "labels" in batch.keys() assert "input_ids" in batch.keys() assert "attention_mask" in batch.keys() assert batch["labels"][0][268] == -100 assert batch["labels"][0][269] == 22291 assert batch["input_ids"][0][0] == 1 assert batch["labels"][0][-1] == 2 assert batch["input_ids"][0][-1] == 2 @patch('llama_recipes.finetuning.train') @patch('llama_recipes.finetuning.LlamaTokenizer') @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained') @patch('llama_recipes.finetuning.optim.AdamW') @patch('llama_recipes.finetuning.StepLR') def test_samsum_dataset_packing(step_lr, optimizer, get_model, tokenizer, train, mocker): from llama_recipes.finetuning import main #Align with Llama 2 tokenizer tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '', 'eos_token': ''}) tokenizer.from_pretrained.return_value.bos_token_id = 1 tokenizer.from_pretrained.return_value.eos_token_id = 2 BATCH_SIZE = 8 kwargs = { "model_name": "decapoda-research/llama-7b-hf", "batch_size_training": 8, "val_batch_size": 1, "use_peft": False, "dataset": "samsum_dataset", "batching_strategy": "packing", } main(**kwargs) assert train.call_count == 1 args, kwargs = train.call_args train_dataloader = args[1] eval_dataloader = args[2] assert len(train_dataloader) == 96 assert len(eval_dataloader) == 42 batch = next(iter(train_dataloader)) assert "labels" in batch.keys() assert "input_ids" in batch.keys() assert "attention_mask" in batch.keys() assert batch["labels"][0].size(0) == 4096 assert batch["input_ids"][0].size(0) == 4096 assert batch["attention_mask"][0].size(0) == 4096