123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import pytest
- from unittest.mock import patch
- from transformers import LlamaTokenizer
- def check_padded_entry(batch):
- seq_len = sum(batch["attention_mask"][0])
- assert seq_len < len(batch["attention_mask"][0])
- assert batch["labels"][0][0] == -100
- assert batch["labels"][0][seq_len-1] == 2
- assert batch["labels"][0][-1] == -100
- assert batch["input_ids"][0][0] == 1
- assert batch["input_ids"][0][-1] == 2
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaTokenizer')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker):
- from llama_recipes.finetuning import main
- #Align with Llama 2 tokenizer
- tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
- tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>'})
- tokenizer.from_pretrained.return_value.bos_token_id = 1
- tokenizer.from_pretrained.return_value.eos_token_id = 2
- kwargs = {
- "dataset": "custom_dataset",
- "model_name": "decapoda-research/llama-7b-hf", # We use the tokenizer as a surrogate for llama2 tokenizer here
- "custom_dataset.file": "examples/custom_dataset.py",
- "custom_dataset.train_split": "validation",
- "batch_size_training": 2,
- "val_batch_size": 4,
- "use_peft": False,
- "batching_strategy": "padding"
- }
- main(**kwargs)
- assert train.call_count == 1
- args, kwargs = train.call_args
- train_dataloader = args[1]
- eval_dataloader = args[2]
- tokenizer = args[3]
- assert len(train_dataloader) == 1120
- assert len(eval_dataloader) == 1120 //2
- it = iter(eval_dataloader)
- batch = next(it)
- STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)
- EXPECTED_STRING = "[INST] Who made Berlin [/INST] dunno"
- assert STRING.startswith(EXPECTED_STRING)
- assert batch["input_ids"].size(0) == 4
- assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
- check_padded_entry(batch)
- it = iter(train_dataloader)
- for _ in range(5):
- next(it)
- batch = next(it)
- STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)
- EXPECTED_STRING = "[INST] How do I initialize a Typescript project using npm and git? [/INST] # Initialize a new NPM project"
- assert STRING.startswith(EXPECTED_STRING)
- assert batch["input_ids"].size(0) == 2
- assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
- check_padded_entry(batch)
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):
- from llama_recipes.finetuning import main
- tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
- kwargs = {
- "dataset": "custom_dataset",
- "custom_dataset.file": "examples/custom_dataset.py:get_unknown_dataset",
- "batch_size_training": 1,
- "use_peft": False,
- }
- with pytest.raises(AttributeError):
- main(**kwargs)
|