test_custom_dataset.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import pytest
  4. from unittest.mock import patch
  5. from transformers import LlamaTokenizer
  6. def check_padded_entry(batch):
  7. seq_len = sum(batch["attention_mask"][0])
  8. assert seq_len < len(batch["attention_mask"][0])
  9. assert batch["labels"][0][0] == -100
  10. assert batch["labels"][0][seq_len-1] == 2
  11. assert batch["labels"][0][-1] == -100
  12. assert batch["input_ids"][0][0] == 1
  13. assert batch["input_ids"][0][-1] == 2
  14. @patch('llama_recipes.finetuning.train')
  15. @patch('llama_recipes.finetuning.LlamaTokenizer')
  16. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  17. @patch('llama_recipes.finetuning.optim.AdamW')
  18. @patch('llama_recipes.finetuning.StepLR')
  19. def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker):
  20. from llama_recipes.finetuning import main
  21. #Align with Llama 2 tokenizer
  22. tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
  23. tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>'})
  24. tokenizer.from_pretrained.return_value.bos_token_id = 1
  25. tokenizer.from_pretrained.return_value.eos_token_id = 2
  26. kwargs = {
  27. "dataset": "custom_dataset",
  28. "model_name": "decapoda-research/llama-7b-hf", # We use the tokenizer as a surrogate for llama2 tokenizer here
  29. "custom_dataset.file": "examples/custom_dataset.py",
  30. "custom_dataset.train_split": "validation",
  31. "batch_size_training": 2,
  32. "val_batch_size": 4,
  33. "use_peft": False,
  34. "batching_strategy": "padding"
  35. }
  36. main(**kwargs)
  37. assert train.call_count == 1
  38. args, kwargs = train.call_args
  39. train_dataloader = args[1]
  40. eval_dataloader = args[2]
  41. tokenizer = args[3]
  42. assert len(train_dataloader) == 1120
  43. assert len(eval_dataloader) == 1120 //2
  44. it = iter(eval_dataloader)
  45. batch = next(it)
  46. STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)
  47. EXPECTED_STRING = "[INST] Who made Berlin [/INST] dunno"
  48. assert STRING.startswith(EXPECTED_STRING)
  49. assert batch["input_ids"].size(0) == 4
  50. assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
  51. check_padded_entry(batch)
  52. it = iter(train_dataloader)
  53. for _ in range(5):
  54. next(it)
  55. batch = next(it)
  56. STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)
  57. EXPECTED_STRING = "[INST] How do I initialize a Typescript project using npm and git? [/INST] # Initialize a new NPM project"
  58. assert STRING.startswith(EXPECTED_STRING)
  59. assert batch["input_ids"].size(0) == 2
  60. assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
  61. check_padded_entry(batch)
  62. @patch('llama_recipes.finetuning.train')
  63. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  64. @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  65. @patch('llama_recipes.finetuning.optim.AdamW')
  66. @patch('llama_recipes.finetuning.StepLR')
  67. def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):
  68. from llama_recipes.finetuning import main
  69. tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
  70. kwargs = {
  71. "dataset": "custom_dataset",
  72. "custom_dataset.file": "examples/custom_dataset.py:get_unknown_dataset",
  73. "batch_size_training": 1,
  74. "use_peft": False,
  75. }
  76. with pytest.raises(AttributeError):
  77. main(**kwargs)