1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import pytest
- from unittest.mock import patch
- from transformers import LlamaTokenizer
- @pytest.mark.skip_missing_tokenizer
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaTokenizer')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_grammar_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer):
- from llama_recipes.finetuning import main
- setup_tokenizer(tokenizer)
- BATCH_SIZE = 8
- kwargs = {
- "model_name": "meta-llama/Llama-2-7b-hf",
- "batch_size_training": BATCH_SIZE,
- "val_batch_size": 1,
- "use_peft": False,
- "dataset": "grammar_dataset",
- "batching_strategy": "padding",
- }
- main(**kwargs)
- assert train.call_count == 1
- args, kwargs = train.call_args
- train_dataloader = args[1]
- eval_dataloader = args[2]
- VAL_SAMPLES = 2988
- TRAIN_SAMPLES = 13016
- assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
- assert len(eval_dataloader) == VAL_SAMPLES
- batch = next(iter(train_dataloader))
- assert "labels" in batch.keys()
- assert "input_ids" in batch.keys()
- assert "attention_mask" in batch.keys()
- assert batch["labels"][0][31] == -100
- assert batch["labels"][0][32] == 1152
- assert batch["input_ids"][0][0] == 1
- assert batch["labels"][0][-1] == 2
- assert batch["input_ids"][0][-1] == 2
|