# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import pytest from unittest.mock import patch from transformers import LlamaTokenizer @pytest.mark.skip_missing_tokenizer @patch('llama_recipes.finetuning.train') @patch('llama_recipes.finetuning.LlamaTokenizer') @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained') @patch('llama_recipes.finetuning.optim.AdamW') @patch('llama_recipes.finetuning.StepLR') def test_grammar_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer): from llama_recipes.finetuning import main setup_tokenizer(tokenizer) BATCH_SIZE = 8 kwargs = { "model_name": "meta-llama/Llama-2-7b-hf", "batch_size_training": BATCH_SIZE, "val_batch_size": 1, "use_peft": False, "dataset": "grammar_dataset", "batching_strategy": "padding", } main(**kwargs) assert train.call_count == 1 args, kwargs = train.call_args train_dataloader = args[1] eval_dataloader = args[2] VAL_SAMPLES = 2988 TRAIN_SAMPLES = 13016 assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE assert len(eval_dataloader) == VAL_SAMPLES batch = next(iter(train_dataloader)) assert "labels" in batch.keys() assert "input_ids" in batch.keys() assert "attention_mask" in batch.keys() assert batch["labels"][0][31] == -100 assert batch["labels"][0][32] == 1152 assert batch["input_ids"][0][0] == 1 assert batch["labels"][0][-1] == 2 assert batch["input_ids"][0][-1] == 2