123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import pytest
- from unittest.mock import patch
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_custom_dataset(step_lr, optimizer, get_model, train, mocker):
- from llama_recipes.finetuning import main
- kwargs = {
- "dataset": "custom_dataset",
- "model_name": "decapoda-research/llama-7b-hf", # We use the tokenizer as a surrogate for llama2 tokenizer here
- "custom_dataset.file": "examples/custom_dataset.py",
- "custom_dataset.train_split": "validation",
- "batch_size_training": 2,
- "val_batch_size": 4,
- "use_peft": False,
- }
- main(**kwargs)
- assert train.call_count == 1
- args, kwargs = train.call_args
- train_dataloader = args[1]
- eval_dataloader = args[2]
- tokenizer = args[3]
- assert len(train_dataloader) == 1120
- assert len(eval_dataloader) == 1120 //2
- it = iter(eval_dataloader)
- STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True)
- EXPECTED_STRING = "[INST] Who made Berlin [/INST] dunno"
- assert STRING.startswith(EXPECTED_STRING)
-
- assert next(it)["input_ids"].size(0) == 4
- next(it)
- next(it)
- STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True)
- EXPECTED_STRING = "[INST] Implementa el algoritmo `bubble sort` en C. [/INST] xdxdxd"
- assert STRING.startswith(EXPECTED_STRING)
-
- assert "labels" in next(iter(train_dataloader)).keys()
- assert "input_ids" in next(iter(train_dataloader)).keys()
- assert "attention_mask" in next(iter(train_dataloader)).keys()
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):
- from llama_recipes.finetuning import main
- tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
- kwargs = {
- "dataset": "custom_dataset",
- "custom_dataset.file": "examples/custom_dataset.py:get_unknown_dataset",
- "batch_size_training": 1,
- "use_peft": False,
- }
- with pytest.raises(AttributeError):
- main(**kwargs)
|