# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import pytest from unittest.mock import patch @patch('llama_recipes.finetuning.train') @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained') @patch('llama_recipes.finetuning.optim.AdamW') @patch('llama_recipes.finetuning.StepLR') def test_custom_dataset(step_lr, optimizer, get_model, train, mocker): from llama_recipes.finetuning import main kwargs = { "dataset": "custom_dataset", "model_name": "decapoda-research/llama-7b-hf", # We use the tokenizer as a surrogate for llama2 tokenizer here "custom_dataset.file": "examples/custom_dataset.py", "custom_dataset.train_split": "validation", "batch_size_training": 2, "val_batch_size": 4, "use_peft": False, } main(**kwargs) assert train.call_count == 1 args, kwargs = train.call_args train_dataloader = args[1] eval_dataloader = args[2] tokenizer = args[3] assert len(train_dataloader) == 1120 assert len(eval_dataloader) == 1120 //2 it = iter(eval_dataloader) STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True) EXPECTED_STRING = "[INST] Who made Berlin [/INST] dunno" assert STRING.startswith(EXPECTED_STRING) assert next(it)["input_ids"].size(0) == 4 next(it) next(it) STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True) EXPECTED_STRING = "[INST] Implementa el algoritmo `bubble sort` en C. [/INST] xdxdxd" assert STRING.startswith(EXPECTED_STRING) assert "labels" in next(iter(train_dataloader)).keys() assert "input_ids" in next(iter(train_dataloader)).keys() assert "attention_mask" in next(iter(train_dataloader)).keys() @patch('llama_recipes.finetuning.train') @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained') @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained') @patch('llama_recipes.finetuning.optim.AdamW') @patch('llama_recipes.finetuning.StepLR') def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker): from llama_recipes.finetuning import main tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]}) kwargs = { "dataset": "custom_dataset", "custom_dataset.file": "examples/custom_dataset.py:get_unknown_dataset", "batch_size_training": 1, "use_peft": False, } with pytest.raises(AttributeError): main(**kwargs)