Matthias Reso 1 tahun lalu
induk
melakukan
99d97010ab
2 mengubah file dengan 2 tambahan dan 2 penghapusan
  1. 1 1
      README.md
  2. 1 1
      examples/README.md

+ 1 - 1
README.md

@@ -101,7 +101,7 @@ If you want to dive right into single or multi GPU fine-tuning, run the examples
 All the parameters in the examples and recipes below need to be further tuned to have desired results based on the model, method, data and task at hand.
 
 **Note:**
-* To change the dataset in the commands below pass the `dataset` arg. Current options for integarted dataset are `grammar_dataset`, `alpaca_dataset`and  `samsum_dataset`. A description of how to use your own dataset and how to add custom datasets can be found in [Dataset.md](./docs/Dataset.md#using-custom-datasets). For  `grammar_dataset`, `alpaca_dataset` please make sure you use the suggested instructions from [here](./docs/single_gpu.md#how-to-run-with-different-datasets) to set them up.
+* To change the dataset in the commands below pass the `dataset` arg. Current options for integrated dataset are `grammar_dataset`, `alpaca_dataset`and  `samsum_dataset`. A description of how to use your own dataset and how to add custom datasets can be found in [Dataset.md](./docs/Dataset.md#using-custom-datasets). For  `grammar_dataset`, `alpaca_dataset` please make sure you use the suggested instructions from [here](./docs/single_gpu.md#how-to-run-with-different-datasets) to set them up.
 
 * Default dataset and other LORA config has been set to `samsum_dataset`.
 

+ 1 - 1
examples/README.md

@@ -35,4 +35,4 @@ For more in depth information on inference including inference safety checks and
 
 ## Train on custom dataset
 To show how to train a model on a custom dataset we provide an example to generate a custom dataset in [custom_dataset.py](./custom_dataset.py).
-The usage of the custom dataset is further decribed in the datasets [README](../docs/Dataset.md#training-on-custom-data).
+The usage of the custom dataset is further described in the datasets [README](../docs/Dataset.md#training-on-custom-data).