|
@@ -1,287 +0,0 @@
|
|
|
-import argparse
|
|
|
-import json
|
|
|
-import logging
|
|
|
-import os
|
|
|
-import re
|
|
|
-import sys
|
|
|
-from pathlib import Path
|
|
|
-from typing import Union
|
|
|
-
|
|
|
-import numpy as np
|
|
|
-
|
|
|
-from lm_eval import evaluator, utils
|
|
|
-from lm_eval.api.registry import ALL_TASKS
|
|
|
-from lm_eval.tasks import include_path, initialize_tasks
|
|
|
-from lm_eval.utils import make_table
|
|
|
-
|
|
|
-
|
|
|
-def _handle_non_serializable(o):
|
|
|
- if isinstance(o, np.int64) or isinstance(o, np.int32):
|
|
|
- return int(o)
|
|
|
- elif isinstance(o, set):
|
|
|
- return list(o)
|
|
|
- else:
|
|
|
- return str(o)
|
|
|
-
|
|
|
-
|
|
|
-def parse_eval_args() -> argparse.Namespace:
|
|
|
- parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
|
|
|
- parser.add_argument("--model", "-m", default="hf", help="Name of model e.g. `hf`")
|
|
|
- parser.add_argument(
|
|
|
- "--tasks",
|
|
|
- "-t",
|
|
|
- default=None,
|
|
|
- metavar="task1,task2",
|
|
|
- help="To get full list of tasks, use the command lm-eval --tasks list",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--model_args",
|
|
|
- "-a",
|
|
|
- default="",
|
|
|
- help="Comma separated string arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--num_fewshot",
|
|
|
- "-f",
|
|
|
- type=int,
|
|
|
- default=None,
|
|
|
- metavar="N",
|
|
|
- help="Number of examples in few-shot context",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--batch_size",
|
|
|
- "-b",
|
|
|
- type=str,
|
|
|
- default=1,
|
|
|
- metavar="auto|auto:N|N",
|
|
|
- help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--max_batch_size",
|
|
|
- type=int,
|
|
|
- default=None,
|
|
|
- metavar="N",
|
|
|
- help="Maximal batch size to try with --batch_size auto.",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--device",
|
|
|
- type=str,
|
|
|
- default=None,
|
|
|
- help="Device to use (e.g. cuda, cuda:0, cpu).",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--output_path",
|
|
|
- "-o",
|
|
|
- default=None,
|
|
|
- type=str,
|
|
|
- metavar="DIR|DIR/file.json",
|
|
|
- help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--limit",
|
|
|
- "-L",
|
|
|
- type=float,
|
|
|
- default=None,
|
|
|
- metavar="N|0<N<1",
|
|
|
- help="Limit the number of examples per task. "
|
|
|
- "If <1, limit is a percentage of the total number of examples.",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--use_cache",
|
|
|
- "-c",
|
|
|
- type=str,
|
|
|
- default=None,
|
|
|
- metavar="DIR",
|
|
|
- help="A path to a sqlite db file for caching model responses. `None` if not caching.",
|
|
|
- )
|
|
|
- parser.add_argument("--decontamination_ngrams_path", default=None) # TODO: not used
|
|
|
- parser.add_argument(
|
|
|
- "--check_integrity",
|
|
|
- action="store_true",
|
|
|
- help="Whether to run the relevant part of the test suite for the tasks.",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--write_out",
|
|
|
- "-w",
|
|
|
- action="store_true",
|
|
|
- default=False,
|
|
|
- help="Prints the prompt for the first few documents.",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--log_samples",
|
|
|
- "-s",
|
|
|
- action="store_true",
|
|
|
- default=False,
|
|
|
- help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis. Use with --output_path.",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--show_config",
|
|
|
- action="store_true",
|
|
|
- default=False,
|
|
|
- help="If True, shows the the full config of all tasks at the end of the evaluation.",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--include_path",
|
|
|
- type=str,
|
|
|
- default=None,
|
|
|
- metavar="DIR",
|
|
|
- help="Additional path to include if there are external tasks to include.",
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--gen_kwargs",
|
|
|
- default=None,
|
|
|
- help=(
|
|
|
- "String arguments for model generation on greedy_until tasks,"
|
|
|
- " e.g. `temperature=0,top_k=0,top_p=0`."
|
|
|
- ),
|
|
|
- )
|
|
|
- parser.add_argument(
|
|
|
- "--verbosity",
|
|
|
- "-v",
|
|
|
- type=str.upper,
|
|
|
- default="INFO",
|
|
|
- metavar="CRITICAL|ERROR|WARNING|INFO|DEBUG",
|
|
|
- help="Controls the reported logging error level. Set to DEBUG when testing + adding new task configurations for comprehensive log output.",
|
|
|
- )
|
|
|
- return parser.parse_args()
|
|
|
-
|
|
|
-
|
|
|
-def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None:
|
|
|
- if not args:
|
|
|
- # we allow for args to be passed externally, else we parse them ourselves
|
|
|
- args = parse_eval_args()
|
|
|
-
|
|
|
- eval_logger = utils.eval_logger
|
|
|
- eval_logger.setLevel(getattr(logging, f"{args.verbosity}"))
|
|
|
- eval_logger.info(f"Verbosity set to {args.verbosity}")
|
|
|
- os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
-
|
|
|
- initialize_tasks(args.verbosity)
|
|
|
-
|
|
|
- if args.limit:
|
|
|
- eval_logger.warning(
|
|
|
- " --limit SHOULD ONLY BE USED FOR TESTING."
|
|
|
- "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
|
|
|
- )
|
|
|
- if args.include_path is not None:
|
|
|
- eval_logger.info(f"Including path: {args.include_path}")
|
|
|
- include_path(args.include_path)
|
|
|
-
|
|
|
- if args.tasks is None:
|
|
|
- task_names = ALL_TASKS
|
|
|
- elif args.tasks == "list":
|
|
|
- eval_logger.info(
|
|
|
- "Available Tasks:\n - {}".format("\n - ".join(sorted(ALL_TASKS)))
|
|
|
- )
|
|
|
- sys.exit()
|
|
|
- else:
|
|
|
- if os.path.isdir(args.tasks):
|
|
|
- import glob
|
|
|
-
|
|
|
- task_names = []
|
|
|
- yaml_path = os.path.join(args.tasks, "*.yaml")
|
|
|
- for yaml_file in glob.glob(yaml_path):
|
|
|
- config = utils.load_yaml_config(yaml_file)
|
|
|
- task_names.append(config)
|
|
|
- else:
|
|
|
- tasks_list = args.tasks.split(",")
|
|
|
- task_names = utils.pattern_match(tasks_list, ALL_TASKS)
|
|
|
- for task in [task for task in tasks_list if task not in task_names]:
|
|
|
- if os.path.isfile(task):
|
|
|
- config = utils.load_yaml_config(task)
|
|
|
- task_names.append(config)
|
|
|
- task_missing = [
|
|
|
- task
|
|
|
- for task in tasks_list
|
|
|
- if task not in task_names and "*" not in task
|
|
|
- ] # we don't want errors if a wildcard ("*") task name was used
|
|
|
-
|
|
|
- if task_missing:
|
|
|
- missing = ", ".join(task_missing)
|
|
|
- eval_logger.error(
|
|
|
- f"Tasks were not found: {missing}\n"
|
|
|
- f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks",
|
|
|
- )
|
|
|
- raise ValueError(
|
|
|
- f"Tasks not found: {missing}. Try `lm-eval --tasks list` for list of available tasks, or '--verbosity DEBUG' to troubleshoot task registration issues."
|
|
|
- )
|
|
|
-
|
|
|
- if args.output_path:
|
|
|
- path = Path(args.output_path)
|
|
|
- # check if file or 'dir/results.json' exists
|
|
|
- if path.is_file() or Path(args.output_path).joinpath("results.json").is_file():
|
|
|
- eval_logger.warning(
|
|
|
- f"File already exists at {path}. Results will be overwritten."
|
|
|
- )
|
|
|
- output_path_file = path.joinpath("results.json")
|
|
|
- assert not path.is_file(), "File already exists"
|
|
|
- # if path json then get parent dir
|
|
|
- elif path.suffix in (".json", ".jsonl"):
|
|
|
- output_path_file = path
|
|
|
- path.parent.mkdir(parents=True, exist_ok=True)
|
|
|
- path = path.parent
|
|
|
- else:
|
|
|
- path.mkdir(parents=True, exist_ok=True)
|
|
|
- output_path_file = path.joinpath("results.json")
|
|
|
- elif args.log_samples and not args.output_path:
|
|
|
- assert args.output_path, "Specify --output_path"
|
|
|
-
|
|
|
- eval_logger.info(f"Selected Tasks: {task_names}")
|
|
|
- print(f"type of model args: {type(args.model_args)}")
|
|
|
- print("*************************************")
|
|
|
- results = evaluator.simple_evaluate(
|
|
|
- model=args.model,
|
|
|
- model_args=args.model_args,
|
|
|
- tasks=task_names,
|
|
|
- num_fewshot=args.num_fewshot,
|
|
|
- batch_size=args.batch_size,
|
|
|
- max_batch_size=args.max_batch_size,
|
|
|
- device=args.device,
|
|
|
- use_cache=args.use_cache,
|
|
|
- limit=args.limit,
|
|
|
- decontamination_ngrams_path=args.decontamination_ngrams_path,
|
|
|
- check_integrity=args.check_integrity,
|
|
|
- write_out=args.write_out,
|
|
|
- log_samples=args.log_samples,
|
|
|
- gen_kwargs=args.gen_kwargs,
|
|
|
- )
|
|
|
-
|
|
|
- if results is not None:
|
|
|
- if args.log_samples:
|
|
|
- samples = results.pop("samples")
|
|
|
- dumped = json.dumps(
|
|
|
- results, indent=2, default=_handle_non_serializable, ensure_ascii=False
|
|
|
- )
|
|
|
- if args.show_config:
|
|
|
- print(dumped)
|
|
|
-
|
|
|
- batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))
|
|
|
-
|
|
|
- if args.output_path:
|
|
|
- output_path_file.open("w").write(dumped)
|
|
|
-
|
|
|
- if args.log_samples:
|
|
|
- for task_name, config in results["configs"].items():
|
|
|
- output_name = "{}_{}".format(
|
|
|
- re.sub("/|=", "__", args.model_args), task_name
|
|
|
- )
|
|
|
- filename = path.joinpath(f"{output_name}.jsonl")
|
|
|
- samples_dumped = json.dumps(
|
|
|
- samples[task_name],
|
|
|
- indent=2,
|
|
|
- default=_handle_non_serializable,
|
|
|
- ensure_ascii=False,
|
|
|
- )
|
|
|
- filename.write_text(samples_dumped, encoding="utf-8")
|
|
|
-
|
|
|
- print(
|
|
|
- f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, "
|
|
|
- f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
|
|
|
- )
|
|
|
- print(make_table(results))
|
|
|
- if "groups" in results:
|
|
|
- print(make_table(results, "groups"))
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == "__main__":
|
|
|
- cli_evaluate()
|