|
@@ -0,0 +1,287 @@
|
|
|
+import argparse
|
|
|
+import json
|
|
|
+import logging
|
|
|
+import os
|
|
|
+import re
|
|
|
+import sys
|
|
|
+from pathlib import Path
|
|
|
+from typing import Union
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+from lm_eval import evaluator, utils
|
|
|
+from lm_eval.api.registry import ALL_TASKS
|
|
|
+from lm_eval.tasks import include_path, initialize_tasks
|
|
|
+from lm_eval.utils import make_table
|
|
|
+
|
|
|
+
|
|
|
+def _handle_non_serializable(o):
|
|
|
+ if isinstance(o, np.int64) or isinstance(o, np.int32):
|
|
|
+ return int(o)
|
|
|
+ elif isinstance(o, set):
|
|
|
+ return list(o)
|
|
|
+ else:
|
|
|
+ return str(o)
|
|
|
+
|
|
|
+
|
|
|
+def parse_eval_args() -> argparse.Namespace:
|
|
|
+ parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
|
|
|
+ parser.add_argument("--model", "-m", default="hf", help="Name of model e.g. `hf`")
|
|
|
+ parser.add_argument(
|
|
|
+ "--tasks",
|
|
|
+ "-t",
|
|
|
+ default=None,
|
|
|
+ metavar="task1,task2",
|
|
|
+ help="To get full list of tasks, use the command lm-eval --tasks list",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--model_args",
|
|
|
+ "-a",
|
|
|
+ default="",
|
|
|
+ help="Comma separated string arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--num_fewshot",
|
|
|
+ "-f",
|
|
|
+ type=int,
|
|
|
+ default=None,
|
|
|
+ metavar="N",
|
|
|
+ help="Number of examples in few-shot context",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--batch_size",
|
|
|
+ "-b",
|
|
|
+ type=str,
|
|
|
+ default=1,
|
|
|
+ metavar="auto|auto:N|N",
|
|
|
+ help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--max_batch_size",
|
|
|
+ type=int,
|
|
|
+ default=None,
|
|
|
+ metavar="N",
|
|
|
+ help="Maximal batch size to try with --batch_size auto.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--device",
|
|
|
+ type=str,
|
|
|
+ default=None,
|
|
|
+ help="Device to use (e.g. cuda, cuda:0, cpu).",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--output_path",
|
|
|
+ "-o",
|
|
|
+ default=None,
|
|
|
+ type=str,
|
|
|
+ metavar="DIR|DIR/file.json",
|
|
|
+ help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--limit",
|
|
|
+ "-L",
|
|
|
+ type=float,
|
|
|
+ default=None,
|
|
|
+ metavar="N|0<N<1",
|
|
|
+ help="Limit the number of examples per task. "
|
|
|
+ "If <1, limit is a percentage of the total number of examples.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--use_cache",
|
|
|
+ "-c",
|
|
|
+ type=str,
|
|
|
+ default=None,
|
|
|
+ metavar="DIR",
|
|
|
+ help="A path to a sqlite db file for caching model responses. `None` if not caching.",
|
|
|
+ )
|
|
|
+ parser.add_argument("--decontamination_ngrams_path", default=None) # TODO: not used
|
|
|
+ parser.add_argument(
|
|
|
+ "--check_integrity",
|
|
|
+ action="store_true",
|
|
|
+ help="Whether to run the relevant part of the test suite for the tasks.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--write_out",
|
|
|
+ "-w",
|
|
|
+ action="store_true",
|
|
|
+ default=False,
|
|
|
+ help="Prints the prompt for the first few documents.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--log_samples",
|
|
|
+ "-s",
|
|
|
+ action="store_true",
|
|
|
+ default=False,
|
|
|
+ help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis. Use with --output_path.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--show_config",
|
|
|
+ action="store_true",
|
|
|
+ default=False,
|
|
|
+ help="If True, shows the the full config of all tasks at the end of the evaluation.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--include_path",
|
|
|
+ type=str,
|
|
|
+ default=None,
|
|
|
+ metavar="DIR",
|
|
|
+ help="Additional path to include if there are external tasks to include.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--gen_kwargs",
|
|
|
+ default=None,
|
|
|
+ help=(
|
|
|
+ "String arguments for model generation on greedy_until tasks,"
|
|
|
+ " e.g. `temperature=0,top_k=0,top_p=0`."
|
|
|
+ ),
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--verbosity",
|
|
|
+ "-v",
|
|
|
+ type=str.upper,
|
|
|
+ default="INFO",
|
|
|
+ metavar="CRITICAL|ERROR|WARNING|INFO|DEBUG",
|
|
|
+ help="Controls the reported logging error level. Set to DEBUG when testing + adding new task configurations for comprehensive log output.",
|
|
|
+ )
|
|
|
+ return parser.parse_args()
|
|
|
+
|
|
|
+
|
|
|
+def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None:
|
|
|
+ if not args:
|
|
|
+ # we allow for args to be passed externally, else we parse them ourselves
|
|
|
+ args = parse_eval_args()
|
|
|
+
|
|
|
+ eval_logger = utils.eval_logger
|
|
|
+ eval_logger.setLevel(getattr(logging, f"{args.verbosity}"))
|
|
|
+ eval_logger.info(f"Verbosity set to {args.verbosity}")
|
|
|
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
+
|
|
|
+ initialize_tasks(args.verbosity)
|
|
|
+
|
|
|
+ if args.limit:
|
|
|
+ eval_logger.warning(
|
|
|
+ " --limit SHOULD ONLY BE USED FOR TESTING."
|
|
|
+ "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
|
|
|
+ )
|
|
|
+ if args.include_path is not None:
|
|
|
+ eval_logger.info(f"Including path: {args.include_path}")
|
|
|
+ include_path(args.include_path)
|
|
|
+
|
|
|
+ if args.tasks is None:
|
|
|
+ task_names = ALL_TASKS
|
|
|
+ elif args.tasks == "list":
|
|
|
+ eval_logger.info(
|
|
|
+ "Available Tasks:\n - {}".format("\n - ".join(sorted(ALL_TASKS)))
|
|
|
+ )
|
|
|
+ sys.exit()
|
|
|
+ else:
|
|
|
+ if os.path.isdir(args.tasks):
|
|
|
+ import glob
|
|
|
+
|
|
|
+ task_names = []
|
|
|
+ yaml_path = os.path.join(args.tasks, "*.yaml")
|
|
|
+ for yaml_file in glob.glob(yaml_path):
|
|
|
+ config = utils.load_yaml_config(yaml_file)
|
|
|
+ task_names.append(config)
|
|
|
+ else:
|
|
|
+ tasks_list = args.tasks.split(",")
|
|
|
+ task_names = utils.pattern_match(tasks_list, ALL_TASKS)
|
|
|
+ for task in [task for task in tasks_list if task not in task_names]:
|
|
|
+ if os.path.isfile(task):
|
|
|
+ config = utils.load_yaml_config(task)
|
|
|
+ task_names.append(config)
|
|
|
+ task_missing = [
|
|
|
+ task
|
|
|
+ for task in tasks_list
|
|
|
+ if task not in task_names and "*" not in task
|
|
|
+ ] # we don't want errors if a wildcard ("*") task name was used
|
|
|
+
|
|
|
+ if task_missing:
|
|
|
+ missing = ", ".join(task_missing)
|
|
|
+ eval_logger.error(
|
|
|
+ f"Tasks were not found: {missing}\n"
|
|
|
+ f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks",
|
|
|
+ )
|
|
|
+ raise ValueError(
|
|
|
+ f"Tasks not found: {missing}. Try `lm-eval --tasks list` for list of available tasks, or '--verbosity DEBUG' to troubleshoot task registration issues."
|
|
|
+ )
|
|
|
+
|
|
|
+ if args.output_path:
|
|
|
+ path = Path(args.output_path)
|
|
|
+ # check if file or 'dir/results.json' exists
|
|
|
+ if path.is_file() or Path(args.output_path).joinpath("results.json").is_file():
|
|
|
+ eval_logger.warning(
|
|
|
+ f"File already exists at {path}. Results will be overwritten."
|
|
|
+ )
|
|
|
+ output_path_file = path.joinpath("results.json")
|
|
|
+ assert not path.is_file(), "File already exists"
|
|
|
+ # if path json then get parent dir
|
|
|
+ elif path.suffix in (".json", ".jsonl"):
|
|
|
+ output_path_file = path
|
|
|
+ path.parent.mkdir(parents=True, exist_ok=True)
|
|
|
+ path = path.parent
|
|
|
+ else:
|
|
|
+ path.mkdir(parents=True, exist_ok=True)
|
|
|
+ output_path_file = path.joinpath("results.json")
|
|
|
+ elif args.log_samples and not args.output_path:
|
|
|
+ assert args.output_path, "Specify --output_path"
|
|
|
+
|
|
|
+ eval_logger.info(f"Selected Tasks: {task_names}")
|
|
|
+ print(f"type of model args: {type(args.model_args)}")
|
|
|
+ print("*************************************")
|
|
|
+ results = evaluator.simple_evaluate(
|
|
|
+ model=args.model,
|
|
|
+ model_args=args.model_args,
|
|
|
+ tasks=task_names,
|
|
|
+ num_fewshot=args.num_fewshot,
|
|
|
+ batch_size=args.batch_size,
|
|
|
+ max_batch_size=args.max_batch_size,
|
|
|
+ device=args.device,
|
|
|
+ use_cache=args.use_cache,
|
|
|
+ limit=args.limit,
|
|
|
+ decontamination_ngrams_path=args.decontamination_ngrams_path,
|
|
|
+ check_integrity=args.check_integrity,
|
|
|
+ write_out=args.write_out,
|
|
|
+ log_samples=args.log_samples,
|
|
|
+ gen_kwargs=args.gen_kwargs,
|
|
|
+ )
|
|
|
+
|
|
|
+ if results is not None:
|
|
|
+ if args.log_samples:
|
|
|
+ samples = results.pop("samples")
|
|
|
+ dumped = json.dumps(
|
|
|
+ results, indent=2, default=_handle_non_serializable, ensure_ascii=False
|
|
|
+ )
|
|
|
+ if args.show_config:
|
|
|
+ print(dumped)
|
|
|
+
|
|
|
+ batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))
|
|
|
+
|
|
|
+ if args.output_path:
|
|
|
+ output_path_file.open("w").write(dumped)
|
|
|
+
|
|
|
+ if args.log_samples:
|
|
|
+ for task_name, config in results["configs"].items():
|
|
|
+ output_name = "{}_{}".format(
|
|
|
+ re.sub("/|=", "__", args.model_args), task_name
|
|
|
+ )
|
|
|
+ filename = path.joinpath(f"{output_name}.jsonl")
|
|
|
+ samples_dumped = json.dumps(
|
|
|
+ samples[task_name],
|
|
|
+ indent=2,
|
|
|
+ default=_handle_non_serializable,
|
|
|
+ ensure_ascii=False,
|
|
|
+ )
|
|
|
+ filename.write_text(samples_dumped, encoding="utf-8")
|
|
|
+
|
|
|
+ print(
|
|
|
+ f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, "
|
|
|
+ f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
|
|
|
+ )
|
|
|
+ print(make_table(results))
|
|
|
+ if "groups" in results:
|
|
|
+ print(make_table(results, "groups"))
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ cli_evaluate()
|