singlegpu_finetuning.md 2.7 KB

Fine-tuning with Single GPU

This recipe steps you through how to finetune a Llama 2 model on the text summarization task using the samsum dataset on a single GPU.

These are the instructions for using the canonical finetuning script in the llama-recipes package.

Requirements

Ensure that you have installed the llama-recipes package (details).

To run fine-tuning on a single GPU, we will make use of two packages:

  1. PEFT to use parameter-efficient finetuning.
  2. bitsandbytes for int8 quantization.

How to run it?

python -m finetuning.py  --use_peft --peft_method lora --quantization --use_fp16 --model_name /patht_of_model_folder/7B --output_dir Path/to/save/PEFT/model

The args used in the command above are:

  • --use_peft boolean flag to enable PEFT methods in the script
  • --peft_method to specify the PEFT method, here we use lora other options are llama_adapter, prefix.
  • --quantization boolean flag to enable int8 quantization

[!NOTE]
In case you are using a multi-GPU machine please make sure to only make one of them visible using export CUDA_VISIBLE_DEVICES=GPU:id.

How to run with different datasets?

Currently 3 open source datasets are supported that can be found in Datasets config file. You can also use your custom dataset (more info here).

  • grammar_dataset : use this notebook to pull and process the Jfleg and C4 200M datasets for grammar checking.

  • alpaca_dataset : to get this open source data please download the aplaca.json to dataset folder.

wget -P ../../src/llama_recipes/datasets https://raw.githubusercontent.com/tatsu-lab/stanford_alpaca/main/alpaca_data.json
  • samsum_dataset

to run with each of the datasets set the dataset flag in the command as shown below:

# grammer_dataset

python -m finetuning.py  --use_peft --peft_method lora --quantization  --dataset grammar_dataset --model_name /patht_of_model_folder/7B --output_dir Path/to/save/PEFT/model

# alpaca_dataset

python -m finetuning.py  --use_peft --peft_method lora --quantization  --dataset alpaca_dataset --model_name /patht_of_model_folder/7B --output_dir Path/to/save/PEFT/model


# samsum_dataset

python -m finetuning.py  --use_peft --peft_method lora --quantization  --dataset samsum_dataset --model_name /patht_of_model_folder/7B --output_dir Path/to/save/PEFT/model