To run fine-tuning on a single GPU, we will make use of two packages
1- PEFT methods and in specific using HuggingFace PEFTlibrary.
2- bitsandbytes int8 quantization.
Given combination of PEFT and Int8 quantization, we would be able to fine_tune a Llama 2 7B model on one consumer grade GPU such as A10.
To run the examples, make sure to install the llama-recipes package (See README.md for details).
Please note that the llama-recipes package will install PyTorch 2.0.1 version, in case you want to run FSDP + PEFT, please make sure to install PyTorch nightlies.
Get access to a machine with one GPU or if using a multi-GPU machine please make sure to only make one of them visible using export CUDA_VISIBLE_DEVICES=GPU:id
and run the following. It runs by default with samsum_dataset
for summarization application.
python -m llama_recipes.finetuning --use_peft --peft_method lora --quantization --use_fp16 --model_name /patht_of_model_folder/7B --output_dir Path/to/save/PEFT/model
The args used in the command above are:
--use_peft
boolean flag to enable PEFT methods in the script
--peft_method
to specify the PEFT method, here we use lora
other options are llama_adapter
, prefix
.
--quantization
boolean flag to enable int8 quantization
Currently 4 datasets are supported that can be found in Datasets config file.
grammar_dataset
: use this notebook to pull and process theJfleg and C4 200M datasets for grammar checking.
alpaca_dataset
: to get this open source data please download the aplaca.json
to ft_dataset
folder.
wget -P src/llama_recipes/datasets https://raw.githubusercontent.com/tatsu-lab/stanford_alpaca/main/alpaca_data.json
samsum_dataset
to run with each of the datasets set the dataset
flag in the command as shown below:
# grammer_dataset
python -m llama_recipes.finetuning --use_peft --peft_method lora --quantization --dataset grammar_dataset --model_name /patht_of_model_folder/7B --output_dir Path/to/save/PEFT/model
# alpaca_dataset
python -m llama_recipes.finetuning --use_peft --peft_method lora --quantization --dataset alpaca_dataset --model_name /patht_of_model_folder/7B --output_dir Path/to/save/PEFT/model
# samsum_dataset
python -m llama_recipes.finetuning --use_peft --peft_method lora --quantization --dataset samsum_dataset --model_name /patht_of_model_folder/7B --output_dir Path/to/save/PEFT/model
It let us specify the training settings, everything from model_name
to dataset_name
, batch_size
etc. can be set here. Below is the list of supported settings:
model_name: str="PATH/to/LLAMA 2/7B"
enable_fsdp: bool= False
run_validation: bool=True
batch_size_training: int=4
gradient_accumulation_steps: int=1
num_epochs: int=3
num_workers_dataloader: int=2
lr: float=2e-4
weight_decay: float=0.0
gamma: float= 0.85
use_fp16: bool=False
mixed_precision: bool=True
val_batch_size: int=4
dataset = "samsum_dataset" # alpaca_dataset,grammar_dataset
peft_method: str = "lora" # None , llama_adapter, prefix
use_peft: bool=False
output_dir: str = "./ft-output"
freeze_layers: bool = False
num_freeze_layers: int = 1
quantization: bool = False
one_gpu: bool = False
save_model: bool = False
dist_checkpoint_root_folder: str="model_checkpoints"
dist_checkpoint_folder: str="fine-tuned"
save_optimizer: bool=False
Datasets config file provides the available options for datasets.
peft config file provides the supported PEFT methods and respective settings that can be modified.