123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- from unittest.mock import patch
- import pytest
- import torch
- import os
- import shutil
- from llama_recipes.utils.train_utils import train
- TEMP_OUTPUT_DIR = os.getcwd() + "/tmp"
- @pytest.fixture(scope="session")
- def temp_output_dir():
- # Create the directory during the session-level setup
- temp_output_dir = "tmp"
- os.mkdir(os.path.join(os.getcwd(), temp_output_dir))
- yield temp_output_dir
- # Delete the directory during the session-level teardown
- shutil.rmtree(temp_output_dir)
- @patch("llama_recipes.utils.train_utils.MemoryTrace")
- @patch("llama_recipes.utils.train_utils.nullcontext")
- @patch("llama_recipes.utils.train_utils.torch.cuda.amp.GradScaler")
- @patch("llama_recipes.utils.train_utils.torch.cuda.amp.autocast")
- def test_gradient_accumulation(autocast, scaler, nullcontext, mem_trace, mocker):
- model = mocker.MagicMock(name="model")
- model().loss.__truediv__().detach.return_value = torch.tensor(1)
- mock_tensor = mocker.MagicMock(name="tensor")
- batch = {"input": mock_tensor}
- train_dataloader = [batch, batch, batch, batch, batch]
- eval_dataloader = None
- tokenizer = mocker.MagicMock()
- optimizer = mocker.MagicMock()
- lr_scheduler = mocker.MagicMock()
- gradient_accumulation_steps = 1
- train_config = mocker.MagicMock()
- train_config.enable_fsdp = False
- train_config.use_fp16 = False
- train_config.run_validation = False
- train_config.gradient_clipping = False
- train_config.max_train_step = 0
- train_config.max_eval_step = 0
- train_config.save_metrics = False
- train(
- model,
- train_dataloader,
- eval_dataloader,
- tokenizer,
- optimizer,
- lr_scheduler,
- gradient_accumulation_steps,
- train_config,
- )
- assert optimizer.zero_grad.call_count == 5
- optimizer.zero_grad.reset_mock()
- assert nullcontext.call_count == 5
- nullcontext.reset_mock()
- assert autocast.call_count == 0
- gradient_accumulation_steps = 2
- train_config.use_fp16 = True
- train(
- model,
- train_dataloader,
- eval_dataloader,
- tokenizer,
- optimizer,
- lr_scheduler,
- gradient_accumulation_steps,
- train_config,
- )
- assert optimizer.zero_grad.call_count == 3
- assert nullcontext.call_count == 0
- assert autocast.call_count == 5
- def test_save_to_json(temp_output_dir, mocker):
- model = mocker.MagicMock(name="model")
- model().loss.__truediv__().detach.return_value = torch.tensor(1)
- mock_tensor = mocker.MagicMock(name="tensor")
- batch = {"input": mock_tensor}
- train_dataloader = [batch, batch, batch, batch, batch]
- eval_dataloader = None
- tokenizer = mocker.MagicMock()
- optimizer = mocker.MagicMock()
- lr_scheduler = mocker.MagicMock()
- gradient_accumulation_steps = 1
- train_config = mocker.MagicMock()
- train_config.enable_fsdp = False
- train_config.use_fp16 = False
- train_config.run_validation = False
- train_config.gradient_clipping = False
- train_config.save_metrics = True
- train_config.max_train_step = 0
- train_config.max_eval_step = 0
- train_config.output_dir = temp_output_dir
- results = train(
- model,
- train_dataloader,
- eval_dataloader,
- tokenizer,
- optimizer,
- lr_scheduler,
- gradient_accumulation_steps,
- train_config,
- local_rank=0
- )
- assert results["metrics_filename"] not in ["", None]
- assert os.path.isfile(results["metrics_filename"])
|