12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- # For dataset details visit: https://huggingface.co/datasets/samsum
- import copy
- import datasets
- import itertools
- from llama_recipes.datasets.utils import Concatenator
- B_INST, E_INST = "[INST]", "[/INST]"
- B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
- def tokenize_dialog(dialog, tokenizer):
- prompt_tokens = [tokenizer(f"{B_INST} {(prompt['content']).strip()} {E_INST}") for prompt in dialog[::2]]
- answer_tokens = [tokenizer(f"{answer['content'].strip()} ") for answer in dialog[1::2]]
- answer_tokens = [{k:v[1:] for k,v in items.items()} for items in answer_tokens]
- dialog_tokens = list(itertools.chain.from_iterable(zip(prompt_tokens, answer_tokens)))
- #Add labels, convert prompt token to -100 in order to ignore in loss function
- dialog_tokens = [dict(c, labels=len(c["input_ids"])*[-100,]if i % 2 == 0 else c["input_ids"]) for i,c in enumerate(dialog_tokens)]
- if len(dialog) % 2:
- dialog_tokens += [prompt_tokens[-1]]
- dialog_tokens[-1] = dict(dialog_tokens[-1], labels=[-100]*len(dialog_tokens[-1]["input_ids"]))
- combined_tokens = {}
- for k in dialog_tokens[0].keys():
- combined_tokens[k] = list(itertools.chain(*(t[k] for t in dialog_tokens)))
- return combined_tokens
- def get_custom_dataset(dataset_config, tokenizer, split):
- dataset = datasets.load_dataset("OpenAssistant/oasst1", split=split)
- dataset = dataset.map(lambda sample: {
- "message_id": sample["message_id"],
- "parent_id": sample["parent_id"],
- "text": sample["text"],
- },
- batched=True,
- remove_columns=list(dataset.features),)
- nodes = {}
- messages = {}
- root_ids = []
- for data in dataset:
- if data["parent_id"]:
- nodes[data["parent_id"]] = nodes.get(data["parent_id"], []) + [data["message_id"]]
- else:
- root_ids.append(data["message_id"])
- messages[data["message_id"]]=data["text"]
- def follow(thread, current_id):
- thread = copy.copy(thread) + [messages[current_id]]
- if current_id in nodes:
- new_threads = []
- for next_id in nodes[current_id]:
- new_threads += follow(thread, next_id)
- return new_threads
- else:
- return [thread]
- def get_threads_from_root(root_id):
- all_threads = []
- thread = [messages[root_id]]
- for cid in nodes[root_id]:
- all_threads += follow(thread, cid)
- return all_threads
- dataset = dataset.filter(lambda x: x["message_id"] in root_ids)
- dataset = dataset.map(lambda x: {"thread": get_threads_from_root(x["message_id"])}, remove_columns=list(dataset.features))
- dataset = dataset.map(lambda x: {"thread": [i for row in x["thread"] for i in row]}, batched=True)
- def to_dialog(thread):
- dialog = []
- for i, content in enumerate(thread):
- dialog.append({
- "role": "user" if i % 2 == 0 else "assistant",
- "content": content,
- })
- return {"dialog": dialog}
- dataset = dataset.map(lambda x: to_dialog(x["thread"]), remove_columns=list(dataset.features))
- dataset = dataset.map(lambda x: tokenize_dialog(x["dialog"], tokenizer), remove_columns=list(dataset.features))
- dataset = dataset.map(Concatenator(add_labels=False), batched=True)
- return dataset
|