custom_dataset.py 3.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # For dataset details visit: https://huggingface.co/datasets/samsum
  4. import copy
  5. import datasets
  6. import itertools
  7. from llama_recipes.datasets.utils import Concatenator
  8. B_INST, E_INST = "[INST]", "[/INST]"
  9. B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
  10. def tokenize_dialog(dialog, tokenizer):
  11. prompt_tokens = [tokenizer(f"{B_INST} {(prompt['content']).strip()} {E_INST}") for prompt in dialog[::2]]
  12. answer_tokens = [tokenizer(f"{answer['content'].strip()} ") for answer in dialog[1::2]]
  13. answer_tokens = [{k:v[1:] for k,v in items.items()} for items in answer_tokens]
  14. dialog_tokens = list(itertools.chain.from_iterable(zip(prompt_tokens, answer_tokens)))
  15. #Add labels, convert prompt token to -100 in order to ignore in loss function
  16. dialog_tokens = [dict(c, labels=len(c["input_ids"])*[-100,]if i % 2 == 0 else c["input_ids"]) for i,c in enumerate(dialog_tokens)]
  17. if len(dialog) % 2:
  18. dialog_tokens += [prompt_tokens[-1]]
  19. dialog_tokens[-1] = dict(dialog_tokens[-1], labels=[-100]*len(dialog_tokens[-1]["input_ids"]))
  20. combined_tokens = {}
  21. for k in dialog_tokens[0].keys():
  22. combined_tokens[k] = list(itertools.chain(*(t[k] for t in dialog_tokens)))
  23. return combined_tokens
  24. def get_custom_dataset(dataset_config, tokenizer, split):
  25. dataset = datasets.load_dataset("OpenAssistant/oasst1", split=split)
  26. dataset = dataset.map(lambda sample: {
  27. "message_id": sample["message_id"],
  28. "parent_id": sample["parent_id"],
  29. "text": sample["text"],
  30. },
  31. batched=True,
  32. remove_columns=list(dataset.features),)
  33. nodes = {}
  34. messages = {}
  35. root_ids = []
  36. for data in dataset:
  37. if data["parent_id"]:
  38. nodes[data["parent_id"]] = nodes.get(data["parent_id"], []) + [data["message_id"]]
  39. else:
  40. root_ids.append(data["message_id"])
  41. messages[data["message_id"]]=data["text"]
  42. def follow(thread, current_id):
  43. thread = copy.copy(thread) + [messages[current_id]]
  44. if current_id in nodes:
  45. new_threads = []
  46. for next_id in nodes[current_id]:
  47. new_threads += follow(thread, next_id)
  48. return new_threads
  49. else:
  50. return [thread]
  51. def get_threads_from_root(root_id):
  52. all_threads = []
  53. thread = [messages[root_id]]
  54. for cid in nodes[root_id]:
  55. all_threads += follow(thread, cid)
  56. return all_threads
  57. dataset = dataset.filter(lambda x: x["message_id"] in root_ids)
  58. dataset = dataset.map(lambda x: {"thread": get_threads_from_root(x["message_id"])}, remove_columns=list(dataset.features))
  59. dataset = dataset.map(lambda x: {"thread": [i for row in x["thread"] for i in row]}, batched=True)
  60. def to_dialog(thread):
  61. dialog = []
  62. for i, content in enumerate(thread):
  63. dialog.append({
  64. "role": "user" if i % 2 == 0 else "assistant",
  65. "content": content,
  66. })
  67. return {"dialog": dialog}
  68. dataset = dataset.map(lambda x: to_dialog(x["thread"]), remove_columns=list(dataset.features))
  69. dataset = dataset.map(lambda x: tokenize_dialog(x["dialog"], tokenizer), remove_columns=list(dataset.features))
  70. dataset = dataset.map(Concatenator(add_labels=False), batched=True)
  71. return dataset