123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import csv
- import json
- import time
- import random
- import urllib.request
- import numpy as np
- import transformers
- from concurrent.futures import ThreadPoolExecutor, as_completed
- from typing import Dict, Tuple, List
- # Predefined inputs
- with open('input.jsonl') as input:
- prompt_data = json.load(input)
- with open('parameters.json') as parameters:
- params = json.load(parameters)
- MAX_NEW_TOKEN = params["MAX_NEW_TOKEN"]
- CONCURRENT_LEVELS = params["CONCURRENT_LEVELS"]
- # Threshold for tokens per second below which we deem the query to be slow
- THRESHOLD_TPS = params["THRESHOLD_TPS"]
- # Default Llama 2 tokenizer, replace with your own tokenizer
- TOKENIZER_PATH = params["TOKENIZER_PATH"]
- RANDOM_PROMPT_LENGTH = params["RANDOM_PROMPT_LENGTH"]
- TEMPERATURE = params["TEMPERATURE"]
- TOP_P = params["TOP_P"]
- # Model endpoint provided with API provider
- MODEL_ENDPOINTS = params["MODEL_ENDPOINTS"]
- API_KEY = params["API_KEY"]
- # This tokenizer is downloaded from Azure model catalog for each specific models. The main purpose is to decode the reponses for token calculation
- tokenizer = transformers.AutoTokenizer.from_pretrained(TOKENIZER_PATH)
- # Select vocabulary that is longer than 2 tokens (closer to real words) and close to the English (not foolproof)
- vocab = [token for token in tokenizer.get_vocab().keys() if len(token) > 2 and all(ord(c) < 128 for c in token)]
- def generate_random_prompt(num_tokens):
- generated_tokens_count = 0
- selected_tokens = ""
- while generated_tokens_count < num_tokens:
- selected_tokens += random.choice(vocab)
- selected_tokens += " "
- generated_tokens_count = len(tokenizer.encode(selected_tokens))
- return selected_tokens
- PROMPT = generate_random_prompt(RANDOM_PROMPT_LENGTH)
- num_token_input_prompt = len(tokenizer.encode(PROMPT))
- print(f"Number of token for input prompt: {num_token_input_prompt}")
- def generate_text() -> Tuple[int, int]:
- #Configure payload data sending to API endpoint
- payload = {"prompt": PROMPT,
- "max_tokens": MAX_NEW_TOKEN,
- "temperature": TEMPERATURE,
- "top_p": TOP_P,
- }
- body = str.encode(json.dumps(payload))
- url = MODEL_ENDPOINTS
- api_key = API_KEY
- if not api_key:
- raise Exception("API Key is missing")
-
- headers = {'Content-Type':'application/json', 'Authorization':(api_key)}
- req = urllib.request.Request(url, body, headers)
- token_count = 0
- output = ""
- start_time = time.time()
- # Send request
- try:
- response = urllib.request.urlopen(req)
- result = response.read()
- output = json.loads(result)["choices"][0]["text"]
-
- except urllib.error.HTTPError as error:
- print("The request failed with status code: " + str(error.code))
- # Print the headers - they include the requert ID and the timestamp, which are useful for debugging the failure
- print(error.info())
- print(error.read().decode("utf8", 'ignore'))
- end_time = time.time()
- # Convert to ms
- latency = (end_time - start_time) * 1000
- token_count = len(tokenizer.encode(output))
- return latency, token_count
- def evaluate_performance(concurrent_requests: int) -> Tuple[float, float, float, float, float, float, float, List[float]]:
- latencies = []
- total_output_tokens = 0
- output_tokens_per_second_each_request = []
- start_time = time.time()
- # Init multi-thread execution
- with ThreadPoolExecutor(max_workers=concurrent_requests) as executor:
- future_to_req = {executor.submit(generate_text): i for i in range(concurrent_requests)}
- for future in as_completed(future_to_req):
- latency, token_count = future.result()
- latencies.append(latency)
- total_output_tokens += token_count
- # Calculate tokens per second for this request
- tokens_per_sec = token_count / (latency / 1000)
- output_tokens_per_second_each_request.append(tokens_per_sec)
- end_time = time.time()
- total_time = end_time - start_time
- # RPS (requests per second)
- rps = concurrent_requests / total_time
- # Overall tokens per second
- output_tokens_per_second_overall = total_output_tokens / total_time
- input_tokens_per_second_overall = (num_token_input_prompt * concurrent_requests) / total_time
- p50_latency = np.percentile(latencies, 50)
- p99_latency = np.percentile(latencies, 99)
- # Count the number of requests below the token-per-second threshold
- below_threshold_count = sum(1 for tps in output_tokens_per_second_each_request if tps < THRESHOLD_TPS)
- output_tokens_per_second_per_request = sum(output_tokens_per_second_each_request)/len(output_tokens_per_second_each_request)
- return p50_latency, p99_latency, rps, output_tokens_per_second_overall, input_tokens_per_second_overall, output_tokens_per_second_per_request, below_threshold_count
- # Print markdown
- print("| Number of Concurrent Requests | P50 Latency (ms) | P99 Latency (ms) | RPS | Output Tokens per Second | Input Tokens per Second | Average Output Tokens per Second per Request | Number of Requests Below Threshold |")
- print("|-------------------------------|------------------|------------------|-----|--------------------------|-------------------------|----------------------------------------------|------------------------------------|")
- # Save to file
- csv_file = "performance_metrics.csv"
- with open(csv_file, "w", newline='') as f:
- writer = csv.writer(f)
- writer.writerow(["Number of Concurrent Requests", "P50 Latency (ms)", "P99 Latency (ms)", "RPS", "Output Tokens per Second", "Input Tokens per Second", "Average Output Tokens per Second per Request"])
- for level in CONCURRENT_LEVELS:
- p50_latency, p99_latency, rps, output_tokens_per_second_overall, input_tokens_per_second_overall, output_tokens_per_second_per_request, below_threshold_count = evaluate_performance(level)
- print(f"| {level} | {p50_latency:.2f} | {p99_latency:.2f} | {rps:.2f} | {output_tokens_per_second_overall:.2f} | {input_tokens_per_second_overall:.2f} | {output_tokens_per_second_per_request:.2f} | {below_threshold_count:.2f} |")
- writer.writerow([level, round(p50_latency, 2), round(p99_latency, 2), round(rps, 2), round(output_tokens_per_second_overall, 2), round(input_tokens_per_second_overall, 2), round(output_tokens_per_second_per_request, 2)])
|