1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import pytest
- from unittest.mock import patch
- from transformers import LlamaTokenizer
- def check_padded_entry(batch):
- seq_len = sum(batch["attention_mask"][0])
- assert seq_len < len(batch["attention_mask"][0])
- assert batch["labels"][0][0] == -100
- assert batch["labels"][0][seq_len-1] == 2
- assert batch["labels"][0][-1] == -100
- assert batch["input_ids"][0][0] == 1
- assert batch["input_ids"][0][-1] == 2
- @pytest.mark.skip_missing_tokenizer
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaTokenizer')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer):
- from llama_recipes.finetuning import main
- setup_tokenizer(tokenizer)
- kwargs = {
- "dataset": "custom_dataset",
- "model_name": "meta-llama/Llama-2-7b-hf",
- "custom_dataset.file": "examples/custom_dataset.py",
- "custom_dataset.train_split": "validation",
- "batch_size_training": 2,
- "val_batch_size": 4,
- "use_peft": False,
- "batching_strategy": "padding"
- }
- main(**kwargs)
- assert train.call_count == 1
- args, kwargs = train.call_args
- train_dataloader = args[1]
- eval_dataloader = args[2]
- tokenizer = args[3]
- assert len(train_dataloader) == 1120
- assert len(eval_dataloader) == 1120 //2
- it = iter(eval_dataloader)
- batch = next(it)
- STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)
- EXPECTED_STRING = "[INST] Who made Berlin [/INST] dunno"
- assert STRING.startswith(EXPECTED_STRING)
- assert batch["input_ids"].size(0) == 4
- assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
- check_padded_entry(batch)
- it = iter(train_dataloader)
- for _ in range(5):
- next(it)
- batch = next(it)
- STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)
- EXPECTED_STRING = "[INST] How do I initialize a Typescript project using npm and git? [/INST] # Initialize a new NPM project"
- assert STRING.startswith(EXPECTED_STRING)
- assert batch["input_ids"].size(0) == 2
- assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
- check_padded_entry(batch)
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):
- from llama_recipes.finetuning import main
- tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
- kwargs = {
- "dataset": "custom_dataset",
- "custom_dataset.file": "examples/custom_dataset.py:get_unknown_dataset",
- "batch_size_training": 1,
- "use_peft": False,
- }
- with pytest.raises(AttributeError):
- main(**kwargs)
|