inference.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
  4. import fire
  5. import torch
  6. import os
  7. import sys
  8. import time
  9. from typing import List
  10. from transformers import LlamaTokenizer
  11. from safety_utils import get_safety_checker
  12. from model_utils import load_model, load_peft_model, load_llama_from_config
  13. from accelerate.utils import is_xpu_available
  14. def main(
  15. model_name,
  16. peft_model: str=None,
  17. quantization: bool=False,
  18. max_new_tokens =100, #The maximum numbers of tokens to generate
  19. prompt_file: str=None,
  20. seed: int=42, #seed value for reproducibility
  21. do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
  22. min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
  23. use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  24. top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  25. temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
  26. top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  27. repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
  28. length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
  29. enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
  30. enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
  31. enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
  32. max_padding_length: int=None, # the max padding length to be used with tokenizer padding the prompts.
  33. use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
  34. **kwargs
  35. ):
  36. if prompt_file is not None:
  37. assert os.path.exists(
  38. prompt_file
  39. ), f"Provided Prompt file does not exist {prompt_file}"
  40. with open(prompt_file, "r") as f:
  41. user_prompt = "\n".join(f.readlines())
  42. elif not sys.stdin.isatty():
  43. user_prompt = "\n".join(sys.stdin.readlines())
  44. else:
  45. print("No user prompt provided. Exiting.")
  46. sys.exit(1)
  47. # Set the seeds for reproducibility
  48. if is_xpu_available():
  49. torch.xpu.manual_seed(seed)
  50. else:
  51. torch.cuda.manual_seed(seed)
  52. torch.manual_seed(seed)
  53. model = load_model(model_name, quantization)
  54. if peft_model:
  55. model = load_peft_model(model, peft_model)
  56. model.eval()
  57. if use_fast_kernels:
  58. """
  59. Setting 'use_fast_kernels' will enable
  60. using of Flash Attention or Xformer memory-efficient kernels
  61. based on the hardware being used. This would speed up inference when used for batched inputs.
  62. """
  63. try:
  64. from optimum.bettertransformer import BetterTransformer
  65. model = BetterTransformer.transform(model)
  66. except ImportError:
  67. print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")
  68. tokenizer = LlamaTokenizer.from_pretrained(model_name)
  69. tokenizer.add_special_tokens(
  70. {
  71. "pad_token": "<PAD>",
  72. }
  73. )
  74. model.resize_token_embeddings(model.config.vocab_size + 1)
  75. safety_checker = get_safety_checker(enable_azure_content_safety,
  76. enable_sensitive_topics,
  77. enable_salesforce_content_safety,
  78. )
  79. # Safety check of the user prompt
  80. safety_results = [check(user_prompt) for check in safety_checker]
  81. are_safe = all([r[1] for r in safety_results])
  82. if are_safe:
  83. print("User prompt deemed safe.")
  84. print(f"User prompt:\n{user_prompt}")
  85. else:
  86. print("User prompt deemed unsafe.")
  87. for method, is_safe, report in safety_results:
  88. if not is_safe:
  89. print(method)
  90. print(report)
  91. print("Skipping the inference as the prompt is not safe.")
  92. sys.exit(1) # Exit the program with an error status
  93. if peft_model:
  94. model = load_peft_model(model, peft_model)
  95. model.eval()
  96. batch = tokenizer(user_prompt, padding='max_length', truncation=True,max_length=max_padding_length,return_tensors="pt")
  97. if is_xpu_available():
  98. batch = {k: v.to("xpu") for k, v in batch.items()}
  99. else:
  100. batch = {k: v.to("cuda") for k, v in batch.items()}
  101. start = time.perf_counter()
  102. with torch.no_grad():
  103. outputs = model.generate(
  104. **batch,
  105. max_new_tokens=max_new_tokens,
  106. do_sample=do_sample,
  107. top_p=top_p,
  108. temperature=temperature,
  109. min_length=min_length,
  110. use_cache=use_cache,
  111. top_k=top_k,
  112. repetition_penalty=repetition_penalty,
  113. length_penalty=length_penalty,
  114. **kwargs
  115. )
  116. e2e_inference_time = (time.perf_counter()-start)*1000
  117. print(f"the inference time is {e2e_inference_time} ms")
  118. output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
  119. # Safety check of the model output
  120. safety_results = [check(output_text) for check in safety_checker]
  121. are_safe = all([r[1] for r in safety_results])
  122. if are_safe:
  123. print("User input and model output deemed safe.")
  124. print(f"Model output:\n{output_text}")
  125. else:
  126. print("Model output deemed unsafe.")
  127. for method, is_safe, report in safety_results:
  128. if not is_safe:
  129. print(method)
  130. print(report)
  131. if __name__ == "__main__":
  132. fire.Fire(main)