test_samsum_datasets.py 1.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. from unittest.mock import patch
  4. @patch('llama_recipes.finetuning.train')
  5. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  6. # @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  7. @patch('llama_recipes.finetuning.optim.AdamW')
  8. @patch('llama_recipes.finetuning.StepLR')
  9. def test_samsum_dataset(step_lr, optimizer, get_model, train, mocker):
  10. # def test_samsum_dataset(step_lr, optimizer, tokenizer, get_model, train, mocker):
  11. from llama_recipes.finetuning import main
  12. # tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
  13. BATCH_SIZE = 8
  14. kwargs = {
  15. "model_name": "decapoda-research/llama-7b-hf",
  16. "batch_size_training": 8,
  17. "val_batch_size": 1,
  18. "use_peft": False,
  19. "dataset": "samsum_dataset",
  20. }
  21. main(**kwargs)
  22. assert train.call_count == 1
  23. args, kwargs = train.call_args
  24. train_dataloader = args[1]
  25. eval_dataloader = args[2]
  26. VAL_SAMPLES = 818
  27. TRAIN_SAMPLES = 14732
  28. assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
  29. assert len(eval_dataloader) == VAL_SAMPLES
  30. assert "labels" in next(iter(train_dataloader)).keys()
  31. assert "input_ids" in next(iter(train_dataloader)).keys()
  32. assert "attention_mask" in next(iter(train_dataloader)).keys()