test_grammar_datasets.py 1.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. from unittest.mock import patch
  4. @patch('llama_recipes.finetuning.train')
  5. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  6. @patch('llama_recipes.finetuning.optim.AdamW')
  7. @patch('llama_recipes.finetuning.StepLR')
  8. def test_grammar_dataset(step_lr, optimizer, get_model, train, mocker):
  9. # def test_samsum_dataset(step_lr, optimizer, tokenizer, get_model, train, mocker):
  10. from llama_recipes.finetuning import main
  11. BATCH_SIZE = 8
  12. kwargs = {
  13. "model_name": "decapoda-research/llama-7b-hf",
  14. "batch_size_training": 8,
  15. "val_batch_size": 1,
  16. "use_peft": False,
  17. "dataset": "grammar_dataset",
  18. }
  19. main(**kwargs)
  20. assert train.call_count == 1
  21. args, kwargs = train.call_args
  22. train_dataloader = args[1]
  23. eval_dataloader = args[2]
  24. VAL_SAMPLES = 2988
  25. TRAIN_SAMPLES = 13016
  26. assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
  27. assert len(eval_dataloader) == VAL_SAMPLES
  28. assert "labels" in next(iter(train_dataloader)).keys()
  29. assert "input_ids" in next(iter(train_dataloader)).keys()
  30. assert "attention_mask" in next(iter(train_dataloader)).keys()