llama_finetuning.py 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import os
  4. import sys
  5. from typing import List, Union
  6. import fire
  7. import torch
  8. import transformers
  9. from datasets import load_dataset
  10. import os.path as osp
  11. from tqdm import tqdm
  12. # Unused imports removed
  13. from utils import fsdp_auto_wrap_policy
  14. from transformers import (
  15. LlamaForCausalLM,
  16. LlamaTokenizer,
  17. LlamaConfig,
  18. AutoModelForCausalLM,
  19. AutoModelForSeq2SeqLM,
  20. AutoTokenizer,
  21. default_data_collator,
  22. BitsAndBytesConfig
  23. )
  24. import torch.distributed as dist
  25. # Unused imports removed
  26. from utils.train_utils import (
  27. set_tokenizer_params,
  28. train,
  29. evaluation,
  30. freeze_transformer_layers,
  31. check_frozen_layers_peft_model,
  32. setup,
  33. setup_environ_flags,
  34. cleanup,
  35. clear_gpu_cache,
  36. get_parameter_dtypes,
  37. print_model_size,
  38. get_policies
  39. )
  40. from utils.dataset_utils import get_preprocessed_dataset
  41. from utils.config_utils import (
  42. update_config,
  43. generate_peft_config,
  44. generate_dataset_config,
  45. )
  46. from peft import get_peft_model, TaskType, prepare_model_for_int8_training
  47. import configs
  48. from torch.distributed.fsdp import (
  49. FullyShardedDataParallel as FSDP,
  50. MixedPrecision,
  51. )
  52. from torch.utils.data import DistributedSampler
  53. import policies
  54. from policies import AnyPrecisionAdamW
  55. from configs import fsdp_config, train_config
  56. import torch.optim as optim
  57. from torch.optim.lr_scheduler import StepLR
  58. from pkg_resources import packaging
  59. import torch
  60. import torch.nn as nn
  61. import torch.cuda.nccl as nccl
  62. import torch.distributed as dist
  63. from torch.distributed.fsdp._common_utils import _is_fsdp_flattened
  64. from transformers.models.llama.modeling_llama import LlamaDecoderLayer
  65. def main(**kwargs):
  66. # Update the configuration for the training and sharding process
  67. update_config((train_config, fsdp_config), **kwargs)
  68. # Set the seeds for reproducibility
  69. torch.cuda.manual_seed(train_config.seed)
  70. torch.manual_seed(train_config.seed)
  71. if train_config.enable_fsdp:
  72. setup()
  73. # torchrun specific
  74. local_rank = int(os.environ["LOCAL_RANK"])
  75. rank = int(os.environ["RANK"])
  76. world_size = int(os.environ["WORLD_SIZE"])
  77. if torch.distributed.is_initialized():
  78. torch.cuda.set_device(rank)
  79. setup_environ_flags(rank)
  80. # Calculate gradient accumulation steps
  81. gradient_accumulation_steps = train_config.batch_size_training // train_config.micro_batch_size
  82. # Load the pre-trained model and setup its configuration
  83. if train_config.enable_fsdp:
  84. # for FSDP, we save cpu memory by loading pretrained model on rank0 only.
  85. # this avoids cpu oom when loading large models like llama 70B, in which case
  86. # model alone would consume 2+TB cpu mem (70 * 4 * 8)
  87. if rank == 0:
  88. model = LlamaForCausalLM.from_pretrained(
  89. train_config.model_name,
  90. load_in_8bit=True if train_config.quantization else None,
  91. device_map="auto" if train_config.quantization else None,
  92. )
  93. else:
  94. llama_config = LlamaConfig.from_pretrained(train_config.model_name)
  95. with torch.device("meta"):
  96. model = LlamaForCausalLM(llama_config)
  97. else:
  98. model = LlamaForCausalLM.from_pretrained(
  99. train_config.model_name,
  100. load_in_8bit=True if train_config.quantization else None,
  101. device_map="auto" if train_config.quantization else None,
  102. )
  103. print_model_size(model, train_config, rank if train_config.enable_fsdp else 0)
  104. # Prepare the model for int8 training if quantization is enabled
  105. if train_config.quantization:
  106. model = prepare_model_for_int8_training(model)
  107. # Convert the model to bfloat16 if fsdp and pure_bf16 is enabled
  108. if train_config.enable_fsdp and fsdp_config.pure_bf16:
  109. model.to(torch.bfloat16)
  110. # Load the tokenizer and add special tokens
  111. tokenizer = LlamaTokenizer.from_pretrained(train_config.model_name)
  112. tokenizer.add_special_tokens(
  113. {
  114. "pad_token": "<PAD>",
  115. }
  116. )
  117. if train_config.use_peft:
  118. peft_config = generate_peft_config(train_config, kwargs)
  119. model = get_peft_model(model, peft_config)
  120. model.print_trainable_parameters()
  121. #setting up FSDP if enable_fsdp is enabled
  122. if train_config.enable_fsdp:
  123. if not train_config.use_peft and train_config.freeze_layers:
  124. freeze_transformer_layers(train_config.num_freeze_layers)
  125. mixed_precision_policy, wrapping_policy = get_policies(fsdp_config, rank)
  126. my_auto_wrapping_policy = fsdp_auto_wrap_policy(model, LlamaDecoderLayer)
  127. # given the fast evolving PRs around meta device init, I am not sure
  128. # what is the best param_init_fn atm, maybe we can switch to simple to_emtpy.
  129. def _param_init_fn(module: nn.Module):
  130. torch.manual_seed(0)
  131. for submodule in module.modules():
  132. for param_name, param in submodule.named_parameters(recurse=False):
  133. if not _is_fsdp_flattened(param) and param.is_meta:
  134. materialized_param = nn.Parameter(
  135. torch.empty_like(param, device=torch.device("cuda"))
  136. )
  137. nn.init.uniform_(materialized_param)
  138. setattr(submodule, param_name, materialized_param)
  139. model = FSDP(
  140. model,
  141. auto_wrap_policy= my_auto_wrapping_policy if train_config.use_peft else wrapping_policy,
  142. mixed_precision=mixed_precision_policy if not fsdp_config.pure_bf16 else None,
  143. sharding_strategy=fsdp_config.sharding_strategy,
  144. device_id=torch.cuda.current_device(),
  145. limit_all_gathers=True,
  146. sync_module_states=True,
  147. param_init_fn=None if rank == 0 else _param_init_fn,
  148. )
  149. if fsdp_config.fsdp_activation_checkpointing:
  150. policies.apply_fsdp_checkpointing(model)
  151. elif not train_config.quantization and not train_config.enable_fsdp:
  152. model.to("cuda")
  153. dataset_config = generate_dataset_config(train_config, kwargs)
  154. # Load and preprocess the dataset for training and validation
  155. dataset_train = get_preprocessed_dataset(
  156. tokenizer,
  157. dataset_config,
  158. split="train",
  159. )
  160. if not train_config.enable_fsdp or rank == 0:
  161. print(f"--> Training Set Length = {len(dataset_train)}")
  162. dataset_val = get_preprocessed_dataset(
  163. tokenizer,
  164. dataset_config,
  165. split="test",
  166. )
  167. if not train_config.enable_fsdp or rank == 0:
  168. print(f"--> Validation Set Length = {len(dataset_val)}")
  169. train_sampler = None
  170. val_sampler = None
  171. if train_config.enable_fsdp:
  172. train_sampler = DistributedSampler(
  173. dataset_train,
  174. rank=dist.get_rank(),
  175. num_replicas=dist.get_world_size(),
  176. shuffle=True,
  177. )
  178. if train_config.run_validation:
  179. val_sampler = DistributedSampler(
  180. dataset_val,
  181. rank=dist.get_rank(),
  182. num_replicas=dist.get_world_size(),
  183. )
  184. # Create DataLoaders for the training and validation dataset
  185. train_dataloader = torch.utils.data.DataLoader(
  186. dataset_train,
  187. batch_size=train_config.batch_size_training,
  188. num_workers=train_config.num_workers_dataloader,
  189. pin_memory=True,
  190. sampler=train_sampler if train_sampler else None,
  191. drop_last=True,
  192. collate_fn=default_data_collator,
  193. )
  194. if train_config.run_validation:
  195. eval_dataloader = torch.utils.data.DataLoader(
  196. dataset_val,
  197. batch_size=train_config.val_batch_size,
  198. num_workers=train_config.num_workers_dataloader,
  199. pin_memory=True,
  200. sampler=val_sampler if val_sampler else None,
  201. drop_last=True,
  202. collate_fn=default_data_collator,
  203. )
  204. # Initialize the optimizer and learning rate scheduler
  205. if fsdp_config.pure_bf16 and fsdp_config.optimizer == "anyprecision":
  206. optimizer = AnyPrecisionAdamW(
  207. model.parameters(),
  208. lr=train_config.lr,
  209. momentum_dtype=torch.bfloat16,
  210. variance_dtype=torch.bfloat16,
  211. use_kahan_summation=False,
  212. )
  213. else:
  214. optimizer = optim.AdamW(
  215. model.parameters(),
  216. lr=train_config.lr,
  217. weight_decay=0.0,
  218. )
  219. scheduler = StepLR(optimizer, step_size=1, gamma=train_config.gamma)
  220. # Start the training process
  221. results = train(
  222. model,
  223. train_dataloader,
  224. eval_dataloader,
  225. tokenizer,
  226. optimizer,
  227. scheduler,
  228. gradient_accumulation_steps,
  229. train_config,
  230. fsdp_config if train_config.enable_fsdp else None,
  231. local_rank if train_config.enable_fsdp else None,
  232. rank if train_config.enable_fsdp else None,
  233. )
  234. if not train_config.enable_fsdp or rank==0:
  235. [print(f'Key: {k}, Value: {v}') for k, v in results.items()]
  236. if __name__ == "__main__":
  237. fire.Fire(main)