12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- import fire
- from transformers import AutoTokenizer, AutoModelForCausalLM
- from llama_recipes.inference.prompt_format import build_prompt, create_conversation, LLAMA_GUARD_CATEGORY, create_hf_chat
- from typing import List, Tuple
- from enum import Enum
- class AgentType(Enum):
- AGENT = "Agent"
- USER = "User"
- def main(
- temperature: float = 0.6,
- top_p: float = 0.9,
- max_seq_len: int = 128,
- max_gen_len: int = 64,
- max_batch_size: int = 4,
- ):
- """
- Entry point of the program for generating text using a pretrained model.
- Args:
- ckpt_dir (str): The directory containing checkpoint files for the pretrained model.
- tokenizer_path (str): The path to the tokenizer model used for text encoding/decoding.
- temperature (float, optional): The temperature value for controlling randomness in generation.
- Defaults to 0.6.
- top_p (float, optional): The top-p sampling parameter for controlling diversity in generation.
- Defaults to 0.9.
- max_seq_len (int, optional): The maximum sequence length for input prompts. Defaults to 128.
- max_gen_len (int, optional): The maximum length of generated sequences. Defaults to 64.
- max_batch_size (int, optional): The maximum batch size for generating sequences. Defaults to 4.
- """
- prompts: List[Tuple[List[str], AgentType]] = [
- (["<Sample user prompt>"], AgentType.USER),
- (["<Sample user prompt>",
- "<Sample agent response>"], AgentType.AGENT),
- ]
- model_id = "meta-llama/LlamaGuard-7b"
- device = "cuda"
- # dtype = torch.bfloat16
- tokenizer = AutoTokenizer.from_pretrained(model_id)
- model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True, device_map="auto")
-
- for prompt in prompts:
- formatted_prompt = build_prompt(
- prompt[1],
- LLAMA_GUARD_CATEGORY,
- create_conversation(prompt[0]))
- input = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
- prompt_len = input["input_ids"].shape[-1]
- output = model.generate(**input, max_new_tokens=100, pad_token_id=0)
- results = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
-
- # print("\nprompt template ==================================\n")
- # print(formatted_prompt)
- print("\n==================================\n")
- print(f"> {results}")
- print("\n==================================\n")
-
- print(create_hf_chat(prompt[0]))
- input_ids_hf = tokenizer.apply_chat_template(create_hf_chat(prompt[0]), return_tensors="pt").to("cuda")
- prompt_len_hf = input_ids_hf.shape[-1]
- output_hf = model.generate(input_ids=input_ids_hf, max_new_tokens=100, pad_token_id=0)
- result_hf = tokenizer.decode(output_hf[0][prompt_len_hf:], skip_special_tokens=True)
- formatted_prompt_hf = tokenizer.decode(input_ids_hf[0], skip_special_tokens=True)
- # print("\nHF template ==================================\n")
- # print(formatted_prompt_hf)
- print("\n==================================\n")
- print(f"> HF {result_hf}")
- print("\n==================================\n")
- if __name__ == "__main__":
- fire.Fire(main)
|