123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import os
- import torch
- import warnings
- from peft import PeftConfig
- from transformers import LlamaConfig, LlamaTokenizer, LlamaForCausalLM
- # Class for performing safety checks using AuditNLG library
- class AuditNLGSensitiveTopics(object):
- def __init__(self):
- pass
- def __call__(self, output_text):
- try:
- from auditnlg.safety.exam import safety_scores
- except ImportError as e:
- print("Could not import optional dependency: auditnlg\nPlease install manually with:\n pip install auditnlg\nFollowed by:\npip install -r requirements.txt")
- raise e
-
- data = [{"output": output_text}]
- result = safety_scores(data=data, method="sensitive_topics")
- scores = result[1]["all_scores"][0]
- is_safe = scores["pred_class"] == "none"
- report = ""
- if not is_safe:
- report += f"Predicted class: {scores['pred_class']}\n"
- report += "|" + "|".join(f"{n:^10}" for n in [list(k.keys())[0] for k in scores["class_scores"]]) + "|\n"
- report += "|" + "|".join(f"{n:^10.5}" for n in [list(k.values())[0] for k in scores["class_scores"]]) + "|\n"
- return "Sensitive Topics", is_safe, report
-
-
- class SalesforceSafetyChecker(object):
- def __init__(self):
- pass
- def __call__(self, output_text):
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig
- config = AutoConfig.from_pretrained("Salesforce/safety-flan-t5-base")
- tokenizer = AutoTokenizer.from_pretrained("Salesforce/safety-flan-t5-base")
- model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/safety-flan-t5-base", config=config)
- model.eval()
- prefix = "Is the <Text> field safe or unsafe?"
- input_ids = tokenizer(prefix + " <Text> " + output_text + " <Context> ", return_tensors="pt").input_ids
-
- if len(input_ids[0]) > 512:
- warnings.warn(
- "Input length is > 512 token. Safety check result could be incorrect."
- )
- with torch.no_grad():
- outputs = model.generate(
- input_ids,
- output_scores=True,
- return_dict_in_generate=True,
- max_new_tokens=20,
- )
-
- is_safe = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True).split(" ")[0] == "safe"
-
- report = ""
- if not is_safe:
- true_false_ids = tokenizer("true false").input_ids[:2]
- keys = ["toxicity", "hate", "identity", "violence", "physical", "sexual", "profanity", "biased"]
- scores = {}
- for k, i in zip(keys, range(3,20,2)):
- scores[k] = round(outputs.scores[i][0,true_false_ids].softmax(dim=0)[0].item(), 5)
-
- report += "|" + "|".join(f"{n:^10}" for n in scores.keys()) + "|\n"
- report += "|" + "|".join(f"{n:^10}" for n in scores.values()) + "|\n"
- return "Salesforce Content Safety Flan T5 Base", is_safe, report
-
- def get_total_length(self, data):
- prefix = "Is the <Text> field safe or unsafe "
- input_sample = "<Text> {output} <Context> ".format(**data[0])
- return len(self.tokenizer(prefix + input_sample)["input_ids"])
- # Class for performing safety checks using Azure Content Safety service
- class AzureSaftyChecker(object):
- def __init__(self):
- try:
- from azure.ai.contentsafety import ContentSafetyClient
- from azure.core.credentials import AzureKeyCredential
- key = os.environ["CONTENT_SAFETY_KEY"]
- endpoint = os.environ["CONTENT_SAFETY_ENDPOINT"]
- except ImportError:
- raise Exception(
- "Could not import required package azure-ai-contentsafety. Install with: pip install azure-ai-contentsafety"
- )
- except KeyError:
- raise Exception(
- "Environment variables not set. Please set CONTENT_SAFETY_KEY and CONTENT_SAFETY_ENDPOINT."
- )
- self.client = ContentSafetyClient(endpoint, AzureKeyCredential(key))
- def __call__(self, output_text):
- from azure.core.exceptions import HttpResponseError
- from azure.ai.contentsafety.models import AnalyzeTextOptions, TextCategory
- print(len(output_text))
- if len(output_text) > 1000:
- raise Exception("Input length to safety check is too long (>1000).")
- categories = [
- TextCategory.VIOLENCE,
- TextCategory.SELF_HARM,
- TextCategory.SEXUAL,
- TextCategory.HATE,
- ]
- request = AnalyzeTextOptions(text=output_text, categories=categories)
- try:
- response = self.client.analyze_text(request)
- except HttpResponseError as e:
- print("Analyze text failed.")
- if e.error:
- print(f"Error code: {e.error.code}")
- print(f"Error message: {e.error.message}")
- raise
- print(e)
- raise e
- levels = {0: "Safe", 2: "Low", 4: "Medium", 6: "High"}
- severities = [
- getattr(response, c.name.lower() + "_result").severity for c in categories
- ]
- DEFAULT_LEVELS = [0, 0, 0, 0]
- is_safe = all([s <= l for s, l in zip(severities, DEFAULT_LEVELS)])
- report = ""
- if not is_safe:
- report = "|" + "|".join(f"{c.name:^10}" for c in categories) + "|\n"
- report += "|" + "|".join(f"{levels[s]:^10}" for s in severities) + "|\n"
- return "Azure Content Saftey API", is_safe, report
- # Function to load the PeftModel for performance optimization
- # Function to determine which safety checker to use based on the options selected
- def get_safety_checker(enable_azure_content_safety,
- enable_sensitive_topics,
- enable_salesforce_content_safety,
- ):
- safety_checker = []
- if enable_azure_content_safety:
- safety_checker.append(AzureSaftyChecker())
- if enable_sensitive_topics:
- safety_checker.append(AuditNLGSensitiveTopics())
- if enable_salesforce_content_safety:
- safety_checker.append(SalesforceSafetyChecker())
- return safety_checker
|