test_samsum_datasets.py 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. from functools import partial
  4. from unittest.mock import patch
  5. @patch('llama_recipes.finetuning.train')
  6. @patch('llama_recipes.finetuning.LlamaTokenizer')
  7. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  8. @patch('llama_recipes.finetuning.optim.AdamW')
  9. @patch('llama_recipes.finetuning.StepLR')
  10. def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer):
  11. from llama_recipes.finetuning import main
  12. setup_tokenizer(tokenizer)
  13. BATCH_SIZE = 8
  14. kwargs = {
  15. "model_name": "decapoda-research/llama-7b-hf",
  16. "batch_size_training": BATCH_SIZE,
  17. "val_batch_size": 1,
  18. "use_peft": False,
  19. "dataset": "samsum_dataset",
  20. "batching_strategy": "padding",
  21. }
  22. main(**kwargs)
  23. assert train.call_count == 1
  24. args, kwargs = train.call_args
  25. train_dataloader = args[1]
  26. eval_dataloader = args[2]
  27. VAL_SAMPLES = 818
  28. TRAIN_SAMPLES = 14732
  29. assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
  30. assert len(eval_dataloader) == VAL_SAMPLES
  31. batch = next(iter(train_dataloader))
  32. assert "labels" in batch.keys()
  33. assert "input_ids" in batch.keys()
  34. assert "attention_mask" in batch.keys()
  35. assert batch["labels"][0][268] == -100
  36. assert batch["labels"][0][269] == 22291
  37. assert batch["input_ids"][0][0] == 1
  38. assert batch["labels"][0][-1] == 2
  39. assert batch["input_ids"][0][-1] == 2