test_custom_dataset.py 3.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import pytest
  4. from unittest.mock import patch
  5. from transformers import LlamaTokenizer
  6. def check_padded_entry(batch):
  7. seq_len = sum(batch["attention_mask"][0])
  8. assert seq_len < len(batch["attention_mask"][0])
  9. assert batch["labels"][0][0] == -100
  10. assert batch["labels"][0][seq_len-1] == 2
  11. assert batch["labels"][0][-1] == -100
  12. assert batch["input_ids"][0][0] == 1
  13. assert batch["input_ids"][0][-1] == 2
  14. @patch('llama_recipes.finetuning.train')
  15. @patch('llama_recipes.finetuning.LlamaTokenizer')
  16. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  17. @patch('llama_recipes.finetuning.optim.AdamW')
  18. @patch('llama_recipes.finetuning.StepLR')
  19. def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer):
  20. from llama_recipes.finetuning import main
  21. setup_tokenizer(tokenizer)
  22. kwargs = {
  23. "dataset": "custom_dataset",
  24. "model_name": "decapoda-research/llama-7b-hf", # We use the tokenizer as a surrogate for llama2 tokenizer here
  25. "custom_dataset.file": "examples/custom_dataset.py",
  26. "custom_dataset.train_split": "validation",
  27. "batch_size_training": 2,
  28. "val_batch_size": 4,
  29. "use_peft": False,
  30. "batching_strategy": "padding"
  31. }
  32. main(**kwargs)
  33. assert train.call_count == 1
  34. args, kwargs = train.call_args
  35. train_dataloader = args[1]
  36. eval_dataloader = args[2]
  37. tokenizer = args[3]
  38. assert len(train_dataloader) == 1120
  39. assert len(eval_dataloader) == 1120 //2
  40. it = iter(eval_dataloader)
  41. batch = next(it)
  42. STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)
  43. EXPECTED_STRING = "[INST] Who made Berlin [/INST] dunno"
  44. assert STRING.startswith(EXPECTED_STRING)
  45. assert batch["input_ids"].size(0) == 4
  46. assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
  47. check_padded_entry(batch)
  48. it = iter(train_dataloader)
  49. for _ in range(5):
  50. next(it)
  51. batch = next(it)
  52. STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)
  53. EXPECTED_STRING = "[INST] How do I initialize a Typescript project using npm and git? [/INST] # Initialize a new NPM project"
  54. assert STRING.startswith(EXPECTED_STRING)
  55. assert batch["input_ids"].size(0) == 2
  56. assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
  57. check_padded_entry(batch)
  58. @patch('llama_recipes.finetuning.train')
  59. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  60. @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  61. @patch('llama_recipes.finetuning.optim.AdamW')
  62. @patch('llama_recipes.finetuning.StepLR')
  63. def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):
  64. from llama_recipes.finetuning import main
  65. tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
  66. kwargs = {
  67. "dataset": "custom_dataset",
  68. "custom_dataset.file": "examples/custom_dataset.py:get_unknown_dataset",
  69. "batch_size_training": 1,
  70. "use_peft": False,
  71. }
  72. with pytest.raises(AttributeError):
  73. main(**kwargs)