code_infilling_example.py 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
  4. import fire
  5. import torch
  6. import os
  7. import sys
  8. import time
  9. from transformers import AutoTokenizer
  10. from llama_recipes.inference.safety_utils import get_safety_checker
  11. from llama_recipes.inference.model_utils import load_model, load_peft_model
  12. def main(
  13. model_name,
  14. peft_model: str=None,
  15. quantization: bool=False,
  16. max_new_tokens =100, #The maximum numbers of tokens to generate
  17. prompt_file: str=None,
  18. seed: int=42, #seed value for reproducibility
  19. do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
  20. min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
  21. use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  22. top_p: float=0.9, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  23. temperature: float=0.6, # [optional] The value used to modulate the next token probabilities.
  24. top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  25. repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
  26. length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
  27. enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
  28. enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
  29. enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
  30. use_fast_kernels: bool = True, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
  31. **kwargs
  32. ):
  33. if prompt_file is not None:
  34. assert os.path.exists(
  35. prompt_file
  36. ), f"Provided Prompt file does not exist {prompt_file}"
  37. with open(prompt_file, "r") as f:
  38. user_prompt = f.read()
  39. else:
  40. print("No user prompt provided. Exiting.")
  41. sys.exit(1)
  42. # Set the seeds for reproducibility
  43. torch.cuda.manual_seed(seed)
  44. torch.manual_seed(seed)
  45. model = load_model(model_name, quantization)
  46. model.config.tp_size=1
  47. if peft_model:
  48. model = load_peft_model(model, peft_model)
  49. model.eval()
  50. if use_fast_kernels:
  51. """
  52. Setting 'use_fast_kernels' will enable
  53. using of Flash Attention or Xformer memory-efficient kernels
  54. based on the hardware being used. This would speed up inference when used for batched inputs.
  55. """
  56. try:
  57. from optimum.bettertransformer import BetterTransformer
  58. model = BetterTransformer.transform(model)
  59. except ImportError:
  60. print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")
  61. tokenizer = AutoTokenizer.from_pretrained(model_name)
  62. safety_checker = get_safety_checker(enable_azure_content_safety,
  63. enable_sensitive_topics,
  64. enable_salesforce_content_safety,
  65. )
  66. # Safety check of the user prompt
  67. safety_results = [check(user_prompt) for check in safety_checker]
  68. are_safe = all([r[1] for r in safety_results])
  69. if are_safe:
  70. print("User prompt deemed safe.")
  71. print(f"User prompt:\n{user_prompt}")
  72. else:
  73. print("User prompt deemed unsafe.")
  74. for method, is_safe, report in safety_results:
  75. if not is_safe:
  76. print(method)
  77. print(report)
  78. print("Skipping the inference as the prompt is not safe.")
  79. sys.exit(1) # Exit the program with an error status
  80. batch = tokenizer(user_prompt, return_tensors="pt")
  81. batch = {k: v.to("cuda") for k, v in batch.items()}
  82. start = time.perf_counter()
  83. with torch.no_grad():
  84. outputs = model.generate(
  85. **batch,
  86. max_new_tokens=max_new_tokens,
  87. do_sample=do_sample,
  88. top_p=top_p,
  89. temperature=temperature,
  90. min_length=min_length,
  91. use_cache=use_cache,
  92. top_k=top_k,
  93. repetition_penalty=repetition_penalty,
  94. length_penalty=length_penalty,
  95. **kwargs
  96. )
  97. e2e_inference_time = (time.perf_counter()-start)*1000
  98. print(f"the inference time is {e2e_inference_time} ms")
  99. filling = tokenizer.batch_decode(outputs[:, batch["input_ids"].shape[1]:], skip_special_tokens=True)[0]
  100. # Safety check of the model output
  101. safety_results = [check(filling) for check in safety_checker]
  102. are_safe = all([r[1] for r in safety_results])
  103. if are_safe:
  104. print("User input and model output deemed safe.")
  105. print(user_prompt.replace("<FILL_ME>", filling))
  106. else:
  107. print("Model output deemed unsafe.")
  108. for method, is_safe, report in safety_results:
  109. if not is_safe:
  110. print(method)
  111. print(report)
  112. if __name__ == "__main__":
  113. fire.Fire(main)