1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import gc
- import os
- import sys
- import threading
- import numpy as np
- import psutil
- import torch
- from accelerate.utils import is_xpu_available
- def byte2gb(x):
- return int(x / 2**30)
- # This context manager is used to track the peak memory usage of the process
- class MemoryTrace:
- def __enter__(self):
- gc.collect()
- if is_xpu_available():
- torch.xpu.empty_cache()
- torch.xpu.reset_max_memory_allocated() # reset the peak gauge to zero
- self.begin = byte2gb(torch.xpu.memory_allocated())
- elif torch.cuda.is_available():
- torch.cuda.empty_cache()
- torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
- self.begin = byte2gb(torch.cuda.memory_allocated())
- self.process = psutil.Process()
- self.cpu_begin = byte2gb(self.cpu_mem_used())
- self.peak_monitoring = True
- peak_monitor_thread = threading.Thread(target=self.peak_monitor_func)
- peak_monitor_thread.daemon = True
- peak_monitor_thread.start()
- return self
- def cpu_mem_used(self):
- """get resident set size memory for the current process"""
- return self.process.memory_info().rss
- def peak_monitor_func(self):
- self.cpu_peak = -1
- while True:
- self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak)
- # can't sleep or will not catch the peak right (this comment is here on purpose)
- # time.sleep(0.001) # 1msec
- if not self.peak_monitoring:
- break
- def __exit__(self, *exc):
- self.peak_monitoring = False
- gc.collect()
- if is_xpu_available():
- torch.xpu.empty_cache()
- self.end = byte2gb(torch.xpu.memory_allocated())
- self.peak = byte2gb(torch.xpu.max_memory_allocated())
- xpu_info = torch.xpu.memory_stats()
- self.peak_active_gb = byte2gb(xpu_info["active_bytes.all.peak"])
- self.xpu_malloc_retires = xpu_info.get("num_alloc_retries", 0)
- self.peak_active_gb = byte2gb(xpu_info["active_bytes.all.peak"])
- self.m_xpu_ooms = xpu_info.get("num_ooms", 0)
- self.used = byte2gb(self.end - self.begin)
- self.peaked = byte2gb(self.peak - self.begin)
- self.max_reserved = byte2gb(torch.xpu.max_memory_reserved())
- else:
- torch.cuda.empty_cache()
- self.end = byte2gb(torch.cuda.memory_allocated())
- self.peak = byte2gb(torch.cuda.max_memory_allocated())
- cuda_info = torch.cuda.memory_stats()
- self.peak_active_gb = byte2gb(cuda_info["active_bytes.all.peak"])
- self.cuda_malloc_retires = cuda_info.get("num_alloc_retries", 0)
- self.peak_active_gb = byte2gb(cuda_info["active_bytes.all.peak"])
- self.m_cuda_ooms = cuda_info.get("num_ooms", 0)
- self.used = byte2gb(self.end - self.begin)
- self.peaked = byte2gb(self.peak - self.begin)
- self.max_reserved = byte2gb(torch.cuda.max_memory_reserved())
- self.cpu_end = self.cpu_mem_used()
- self.cpu_used = byte2gb(self.cpu_end - self.cpu_begin)
- self.cpu_peaked = byte2gb(self.cpu_peak - self.cpu_begin)
- # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
|