inference.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
  4. import fire
  5. import torch
  6. import os
  7. import sys
  8. import time
  9. from typing import List
  10. from transformers import LlamaTokenizer
  11. from safety_utils import get_safety_checker
  12. from model_utils import load_model, load_peft_model, load_llama_from_config
  13. from accelerate import init_empty_weights
  14. # Get the current file's directory
  15. current_directory = os.path.dirname(os.path.abspath(__file__))
  16. # Get the parent directory
  17. parent_directory = os.path.dirname(current_directory)
  18. # Append the parent directory to sys.path
  19. sys.path.append(parent_directory)
  20. from model_checkpointing import load_sharded_model_single_gpu
  21. def main(
  22. model_name,
  23. peft_model: str=None,
  24. quantization: bool=False,
  25. max_new_tokens =100, #The maximum numbers of tokens to generate
  26. prompt_file: str=None,
  27. seed: int=42, #seed value for reproducibility
  28. do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
  29. min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
  30. use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  31. top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  32. temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
  33. top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  34. repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
  35. length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
  36. enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
  37. enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
  38. enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5
  39. **kwargs
  40. ):
  41. if prompt_file is not None:
  42. assert os.path.exists(
  43. prompt_file
  44. ), f"Provided Prompt file does not exist {prompt_file}"
  45. with open(prompt_file, "r") as f:
  46. user_prompt = "\n".join(f.readlines())
  47. elif not sys.stdin.isatty():
  48. user_prompt = "\n".join(sys.stdin.readlines())
  49. else:
  50. print("No user prompt provided. Exiting.")
  51. sys.exit(1)
  52. # Set the seeds for reproducibility
  53. torch.cuda.manual_seed(seed)
  54. torch.manual_seed(seed)
  55. model = load_model(model_name, quantization)
  56. tokenizer = LlamaTokenizer.from_pretrained(model_name)
  57. tokenizer.add_special_tokens(
  58. {
  59. "pad_token": "<PAD>",
  60. }
  61. )
  62. safety_checker = get_safety_checker(enable_azure_content_safety,
  63. enable_sensitive_topics,
  64. enable_saleforce_content_safety,
  65. )
  66. # Safety check of the user prompt
  67. safety_results = [check(user_prompt) for check in safety_checker]
  68. are_safe = all([r[1] for r in safety_results])
  69. if are_safe:
  70. print("User prompt deemed safe.")
  71. print(f"User prompt:\n{user_prompt}")
  72. else:
  73. print("User prompt deemed unsafe.")
  74. for method, is_safe, report in safety_results:
  75. if not is_safe:
  76. print(method)
  77. print(report)
  78. print("Skipping the inferece as the prompt is not safe.")
  79. sys.exit(1) # Exit the program with an error status
  80. if peft_model:
  81. model = load_peft_model(model, peft_model)
  82. # model.eval()
  83. batch = tokenizer(user_prompt, return_tensors="pt")
  84. batch = {k: v.to("cuda") for k, v in batch.items()}
  85. start = time.perf_counter()
  86. with torch.no_grad():
  87. outputs = model.generate(
  88. **batch,
  89. max_new_tokens=max_new_tokens,
  90. do_sample=do_sample,
  91. top_p=top_p,
  92. temperature=temperature,
  93. min_length=min_length,
  94. use_cache=use_cache,
  95. top_k=top_k,
  96. repetition_penalty=repetition_penalty,
  97. length_penalty=length_penalty,
  98. **kwargs
  99. )
  100. e2e_inference_time = (time.perf_counter()-start)*1000
  101. print(f"the inference time is {e2e_inference_time} ms")
  102. output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
  103. # Safety check of the model output
  104. safety_results = [check(output_text) for check in safety_checker]
  105. are_safe = all([r[1] for r in safety_results])
  106. if are_safe:
  107. print("User input and model output deemed safe.")
  108. print(f"Model output:\n{output_text}")
  109. else:
  110. print("Model output deemed unsafe.")
  111. for method, is_safe, report in safety_results:
  112. if not is_safe:
  113. print(method)
  114. print(report)
  115. if __name__ == "__main__":
  116. fire.Fire(main)