12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import pytest
- from unittest.mock import patch
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_custom_dataset(step_lr, optimizer, get_model, train, mocker):
- from llama_recipes.finetuning import main
- kwargs = {
- "dataset": "custom_dataset",
- "model_name": "decapoda-research/llama-7b-hf", # We use the tokenizer as a surrogate for llama2 tokenizer here
- "custom_dataset.file": "examples/custom_dataset.py",
- "custom_dataset.train_split": "validation",
- "batch_size_training": 2,
- "use_peft": False,
- }
- main(**kwargs)
- assert train.call_count == 1
- args, kwargs = train.call_args
- train_dataloader = args[1]
- eval_dataloader = args[2]
- tokenizer = args[3]
- assert len(train_dataloader) == 226
- assert len(eval_dataloader) == 2*226
- it = iter(train_dataloader)
- STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True)
- EXPECTED_STRING = "[INST] Напиши функцию на языке swift, которая сортирует массив целых чисел, а затем выводит его на экран [/INST] Вот функция, "
- assert STRING.startswith(EXPECTED_STRING)
- next(it)
- next(it)
- next(it)
- STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True)
- EXPECTED_SUBSTRING_1 = "Therefore you are correct. [INST] How can L’Hopital’s Rule be"
- EXPECTED_SUBSTRING_2 = "a circular path around the turn. [INST] How on earth is that related to L’Hopital’s Rule?"
- assert EXPECTED_SUBSTRING_1 in STRING
- assert EXPECTED_SUBSTRING_2 in STRING
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):
- from llama_recipes.finetuning import main
- tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
- kwargs = {
- "dataset": "custom_dataset",
- "custom_dataset.file": "examples/custom_dataset.py:get_unknown_dataset",
- "batch_size_training": 1,
- "use_peft": False,
- }
- with pytest.raises(AttributeError):
- main(**kwargs)
|