123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import fire
- import os
- import sys
- import time
- import torch
- from transformers import AutoTokenizer
- from llama_recipes.inference.safety_utils import get_safety_checker
- from llama_recipes.inference.model_utils import load_model, load_peft_model
- def handle_safety_check(are_safe_user_prompt, user_prompt, safety_results_user_prompt, are_safe_system_prompt, system_prompt, safety_results_system_prompt):
- """
- Handles the output based on the safety check of both user and system prompts.
- Parameters:
- - are_safe_user_prompt (bool): Indicates whether the user prompt is safe.
- - user_prompt (str): The user prompt that was checked for safety.
- - safety_results_user_prompt (list of tuples): A list of tuples for the user prompt containing the method, safety status, and safety report.
- - are_safe_system_prompt (bool): Indicates whether the system prompt is safe.
- - system_prompt (str): The system prompt that was checked for safety.
- - safety_results_system_prompt (list of tuples): A list of tuples for the system prompt containing the method, safety status, and safety report.
- """
- def print_safety_results(are_safe_prompt, prompt, safety_results, prompt_type="User"):
- """
- Prints the safety results for a prompt.
- Parameters:
- - are_safe_prompt (bool): Indicates whether the prompt is safe.
- - prompt (str): The prompt that was checked for safety.
- - safety_results (list of tuples): A list of tuples containing the method, safety status, and safety report.
- - prompt_type (str): The type of prompt (User/System).
- """
- if are_safe_prompt:
- print(f"{prompt_type} prompt deemed safe.")
- print(f"{prompt_type} prompt:\n{prompt}")
- else:
- print(f"{prompt_type} prompt deemed unsafe.")
- for method, is_safe, report in safety_results:
- if not is_safe:
- print(method)
- print(report)
- print(f"Skipping the inference as the {prompt_type.lower()} prompt is not safe.")
- sys.exit(1)
- # Check user prompt
- print_safety_results(are_safe_user_prompt, user_prompt, safety_results_user_prompt, "User")
-
- # Check system prompt
- print_safety_results(are_safe_system_prompt, system_prompt, safety_results_system_prompt, "System")
- def main(
- model_name,
- peft_model: str=None,
- quantization: bool=False,
- max_new_tokens =100, #The maximum numbers of tokens to generate
- seed: int=42, #seed value for reproducibility
- do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
- min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
- use_cache: bool=False, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
- top_p: float=0.9, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
- temperature: float=0.6, # [optional] The value used to modulate the next token probabilities.
- top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
- repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
- length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
- enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
- enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
- enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
- enable_llamaguard_content_safety: bool=False, # Enable safety check with Llama-Guard
- use_fast_kernels: bool = True, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
- **kwargs
- ):
- system_prompt = input("Please insert your system prompt: ")
- user_prompt = input("Please insert your prompt: ")
- chat = [
- {"role": "system", "content": system_prompt},
- {"role": "user", "content": user_prompt},
- ]
- # Set the seeds for reproducibility
- torch.cuda.manual_seed(seed)
- torch.manual_seed(seed)
-
- model = load_model(model_name, quantization, use_fast_kernels)
- if peft_model:
- model = load_peft_model(model, peft_model)
- model.eval()
-
- tokenizer = AutoTokenizer.from_pretrained(model_name)
- safety_checker = get_safety_checker(enable_azure_content_safety,
- enable_sensitive_topics,
- enable_salesforce_content_safety,
- enable_llamaguard_content_safety,
- )
- # Safety check of the user prompt
- safety_results_user_prompt = [check(user_prompt) for check in safety_checker]
- safety_results_system_prompt = [check(system_prompt) for check in safety_checker]
- are_safe_user_prompt = all([r[1] for r in safety_results_user_prompt])
- are_safe_system_prompt = all([r[1] for r in safety_results_system_prompt])
- handle_safety_check(are_safe_user_prompt, user_prompt, safety_results_user_prompt, are_safe_system_prompt, system_prompt, safety_results_system_prompt)
-
- inputs = tokenizer.apply_chat_template(chat, return_tensors="pt").to("cuda")
- start = time.perf_counter()
- with torch.no_grad():
- outputs = model.generate(
- input_ids=inputs,
- max_new_tokens=max_new_tokens,
- do_sample=do_sample,
- top_p=top_p,
- temperature=temperature,
- min_length=min_length,
- use_cache=use_cache,
- top_k=top_k,
- repetition_penalty=repetition_penalty,
- length_penalty=length_penalty,
- **kwargs
- )
- e2e_inference_time = (time.perf_counter()-start)*1000
- print(f"the inference time is {e2e_inference_time} ms")
- output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
-
- # Safety check of the model output
- safety_results = [check(output_text) for check in safety_checker]
- are_safe = all([r[1] for r in safety_results])
- if are_safe:
- print("User input and model output deemed safe.")
- print(f"Model output:\n{output_text}")
- else:
- print("Model output deemed unsafe.")
- for method, is_safe, report in safety_results:
- if not is_safe:
- print(method)
- print(report)
-
- if __name__ == "__main__":
- fire.Fire(main)
|