123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- import argparse
- import json
- import logging
- import os
- import re
- import sys
- from pathlib import Path
- import numpy as np
- import lm_eval
- from lm_eval import evaluator, tasks
- from lm_eval.utils import make_table, load_yaml_config
- def _handle_non_serializable(o):
- if isinstance(o, np.int64) or isinstance(o, np.int32):
- return int(o)
- elif isinstance(o, set):
- return list(o)
- else:
- return str(o)
- def setup_logging(verbosity):
- logging.basicConfig(level=verbosity.upper(), format='%(asctime)s - %(levelname)s - %(message)s')
- return logging.getLogger(__name__)
- def handle_output(args, results, logger):
- if not args.output_path:
- if args.log_samples:
- logger.error("Specify --output_path for logging samples.")
- sys.exit(1)
- logger.info(json.dumps(results, indent=2, default=_handle_non_serializable))
- return
- path = Path(args.output_path)
- if path.is_file() or path.with_name("results.json").is_file():
- logger.warning(f"File already exists at {path}. Results will be overwritten.")
- output_dir = path.parent if path.suffix in (".json", ".jsonl") else path
- output_dir.mkdir(parents=True, exist_ok=True)
- results_str = json.dumps(results, indent=2, default=_handle_non_serializable)
- if args.show_config:
- logger.info(results_str)
- with open(args.output_path, 'w', encoding='utf-8') as f:
- f.write(results_str)
- if args.log_samples:
- samples = results.pop("samples", {})
- for task_name, _ in results.get("configs", {}).items():
- output_name = re.sub(r"/|=", "__", args.model_args) + "_" + task_name
- sample_file = output_dir.joinpath(f"{output_name}.jsonl")
- sample_data = json.dumps(samples.get(task_name, {}), indent=2, default=_handle_non_serializable)
- sample_file.write_text(sample_data, encoding="utf-8")
- batch_sizes = ",".join(map(str, results.get("config", {}).get("batch_sizes", [])))
- summary = f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
- logger.info(summary)
- logger.info(make_table(results))
- if "groups" in results:
- logger.info(make_table(results, "groups"))
-
- def load_tasks(args):
- tasks.initialize_tasks()
- if args.open_llm_leaderboard_tasks:
- current_dir = os.getcwd()
- config_dir = os.path.join(current_dir, "open_llm_leaderboard")
- lm_eval.tasks.include_path(config_dir)
- return [
- "arc_challenge_25_shot",
- "hellaswag_10_shot",
- "truthfulqa_mc2",
- "winogrande_5_shot",
- "gsm8k",
- "mmlu",
- ]
- return args.tasks.split(",") if args.tasks else []
-
- def parse_eval_args():
- parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
- parser.add_argument("--model", "-m", default="hf", help="Name of model, e.g., `hf`.")
- parser.add_argument("--tasks", "-t", default=None, help="Comma-separated list of tasks, or 'list' to display available tasks.")
- parser.add_argument("--model_args", "-a", default="", help="Comma-separated string arguments for model, e.g., `pretrained=EleutherAI/pythia-160m`.")
- parser.add_argument("--open-llm-leaderboard-tasks", "-oplm", action="store_true", default=False, help="Choose the list of tasks with specification in HF open LLM-leaderboard.")
- parser.add_argument("--num_fewshot", "-f", type=int, default=None, help="Number of examples in few-shot context.")
- parser.add_argument("--batch_size", "-b", default=1, help="Batch size, can be 'auto', 'auto:N', or an integer.")
- parser.add_argument("--max_batch_size", type=int, default=None, help="Maximal batch size with 'auto' batch size.")
- parser.add_argument("--device", default=None, help="Device for evaluation, e.g., 'cuda', 'cpu'.")
- parser.add_argument("--output_path", "-o", type=str, default=None, help="Path for saving results.")
- parser.add_argument("--limit", "-L", type=float, default=None, help="Limit number of examples per task.")
- parser.add_argument("--use_cache", "-c", default=None, help="Path to cache db file, if used.")
- parser.add_argument("--verbosity", "-v", default="INFO", help="Logging level: CRITICAL, ERROR, WARNING, INFO, DEBUG.")
- parser.add_argument("--gen_kwargs", default=None, help="Generation kwargs for tasks that support it.")
- parser.add_argument("--check_integrity", action="store_true", help="Whether to run the relevant part of the test suite for the tasks.")
- parser.add_argument("--write_out", "-w", action="store_true", default=False, help="Prints the prompt for the first few documents.")
- parser.add_argument("--log_samples", "-s", action="store_true", default=False, help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis.")
- parser.add_argument("--show_config", action="store_true", default=False, help="If True, shows the full config of all tasks at the end of the evaluation.")
- parser.add_argument("--include_path", type=str, default=None, help="Additional path to include if there are external tasks.")
- parser.add_argument("--decontamination_ngrams_path", default=None) # Not currently used
- return parser.parse_args()
- def evaluate_model(args):
- try:
- task_list = load_tasks(args)
- # Customized model such as Quantized model etc.
- # In case you are working with a custom model, you can use the following guide to add it here:
- #https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md#external-library-usage
-
- # Evaluate
- results = evaluator.simple_evaluate(
- model=args.model,
- model_args=args.model_args,
- tasks=task_list,
- num_fewshot=args.num_fewshot,
- batch_size=args.batch_size,
- max_batch_size=args.max_batch_size,
- device=args.device,
- use_cache=args.use_cache,
- limit=args.limit,
- decontamination_ngrams_path=args.decontamination_ngrams_path,
- check_integrity=args.check_integrity,
- write_out=args.write_out,
- log_samples=args.log_samples,
- gen_kwargs=args.gen_kwargs,
- )
- handle_output(args, results, logger)
-
- except Exception as e:
- logger.error(f"An error occurred during evaluation: {e}")
- sys.exit(1)
- if __name__ == "__main__":
- args = parse_eval_args()
- logger = setup_logging(args.verbosity)
- evaluate_model(args)
|