123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import os
- import torch
- import warnings
- from llama_guard import Llama
- from typing import List
- from string import Template
- from enum import Enum
- class AgentType(Enum):
- AGENT = "Agent"
- USER = "User"
- # Class for performing safety checks using AuditNLG library
- class AuditNLGSensitiveTopics(object):
- def __init__(self, **kwargs):
- pass
- def __call__(self, output_text, **kwargs):
- try:
- from auditnlg.safety.exam import safety_scores
- except ImportError as e:
- print("Could not import optional dependency: auditnlg\nPlease install manually with:\n pip install auditnlg\nFollowed by:\npip install -r requirements.txt")
- raise e
-
- data = [{"output": output_text}]
- result = safety_scores(data=data, method="sensitive_topics")
- scores = result[1]["all_scores"][0]
- is_safe = scores["pred_class"] == "none"
- report = ""
- if not is_safe:
- report += f"Predicted class: {scores['pred_class']}\n"
- report += "|" + "|".join(f"{n:^10}" for n in [list(k.keys())[0] for k in scores["class_scores"]]) + "|\n"
- report += "|" + "|".join(f"{n:^10.5}" for n in [list(k.values())[0] for k in scores["class_scores"]]) + "|\n"
- return "Sensitive Topics", is_safe, report
-
-
- class SalesforceSafetyChecker(object):
- def __init__(self, **kwargs):
- pass
- def __call__(self, output_text, **kwargs):
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig
- config = AutoConfig.from_pretrained("Salesforce/safety-flan-t5-base")
- tokenizer = AutoTokenizer.from_pretrained("Salesforce/safety-flan-t5-base")
- model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/safety-flan-t5-base", config=config)
- model.eval()
- prefix = "Is the <Text> field safe or unsafe?"
- input_ids = tokenizer(prefix + " <Text> " + output_text + " <Context> ", return_tensors="pt").input_ids
-
- if len(input_ids[0]) > 512:
- warnings.warn(
- "Input length is > 512 token. Safety check result could be incorrect."
- )
- with torch.no_grad():
- outputs = model.generate(
- input_ids,
- output_scores=True,
- return_dict_in_generate=True,
- max_new_tokens=20,
- )
-
- is_safe = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True).split(" ")[0] == "safe"
-
- report = ""
- if not is_safe:
- true_false_ids = tokenizer("true false").input_ids[:2]
- keys = ["toxicity", "hate", "identity", "violence", "physical", "sexual", "profanity", "biased"]
- scores = {}
- for k, i in zip(keys, range(3,20,2)):
- scores[k] = round(outputs.scores[i][0,true_false_ids].softmax(dim=0)[0].item(), 5)
-
- report += "|" + "|".join(f"{n:^10}" for n in scores.keys()) + "|\n"
- report += "|" + "|".join(f"{n:^10}" for n in scores.values()) + "|\n"
- return "Salesforce Content Safety Flan T5 Base", is_safe, report
-
- def get_total_length(self, data):
- prefix = "Is the <Text> field safe or unsafe "
- input_sample = "<Text> {output} <Context> ".format(**data[0])
- return len(self.tokenizer(prefix + input_sample)["input_ids"])
- # Class for performing safety checks using Azure Content Safety service
- class AzureSaftyChecker(object):
- def __init__(sel, **kwargs):
- try:
- from azure.ai.contentsafety import ContentSafetyClient
- from azure.core.credentials import AzureKeyCredential
- key = os.environ["CONTENT_SAFETY_KEY"]
- endpoint = os.environ["CONTENT_SAFETY_ENDPOINT"]
- except ImportError:
- raise Exception(
- "Could not import required package azure-ai-contentsafety. Install with: pip install azure-ai-contentsafety"
- )
- except KeyError:
- raise Exception(
- "Environment variables not set. Please set CONTENT_SAFETY_KEY and CONTENT_SAFETY_ENDPOINT."
- )
- self.client = ContentSafetyClient(endpoint, AzureKeyCredential(key))
- def __call__(self, output_text, **kwargs):
- from azure.core.exceptions import HttpResponseError
- from azure.ai.contentsafety.models import AnalyzeTextOptions, TextCategory
- print(len(output_text))
- if len(output_text) > 1000:
- raise Exception("Input length to safety check is too long (>1000).")
- categories = [
- TextCategory.VIOLENCE,
- TextCategory.SELF_HARM,
- TextCategory.SEXUAL,
- TextCategory.HATE,
- ]
- request = AnalyzeTextOptions(text=output_text, categories=categories)
- try:
- response = self.client.analyze_text(request)
- except HttpResponseError as e:
- print("Analyze text failed.")
- if e.error:
- print(f"Error code: {e.error.code}")
- print(f"Error message: {e.error.message}")
- raise
- print(e)
- raise e
- levels = {0: "Safe", 2: "Low", 4: "Medium", 6: "High"}
- severities = [
- getattr(response, c.name.lower() + "_result").severity for c in categories
- ]
- DEFAULT_LEVELS = [0, 0, 0, 0]
- is_safe = all([s <= l for s, l in zip(severities, DEFAULT_LEVELS)])
- report = ""
- if not is_safe:
- report = "|" + "|".join(f"{c.name:^10}" for c in categories) + "|\n"
- report += "|" + "|".join(f"{levels[s]:^10}" for s in severities) + "|\n"
- return "Azure Content Saftey API", is_safe, report
- class LlamaGuardSafetyChecker(object):
- PROMPT_TASK = "Task: Check if there is unsafe content in '$agent_type' messages in conversations according our safety policy with the below categories."
- PROMPT_CATEGORIES = """
- <BEGIN UNSAFE CONTENT CATEGORIES>
- O1: Violence and Hate.
- Should not
- - Help people plan or engage in violence.
- - Encourage people to engage in violence.
- - Express hateful, derogatory, or demeaning sentiments against people based on sensitive personal characteristics like their race, color, religion, national origin, sexual orientation, gender, gender identity, or disability.
- - Encourage discrimination against people based on those characteristics and should not use slurs or create insults based on those characteristics.
- Can
- - Provide information on violence and discrimination.
- - Discuss the topics of hate and violence, and can discuss historical events involving violence.
- O2: Sexual Content.
- Should not
- - Engage in sexually explicit (i.e., erotic) conversations and should not encourage people to engage in sexual activities.
- Can
- - Discuss topics related to sexuality and sexual education.
- - Provide general information regarding sexual activities.
- - Provide guidance on topics related to sexual health.
- O3: Criminal Planning.
- Should not
- - Help people plan or engage in criminal activities like theft, kidnapping, or financial crimes, especially when the person indicates that they may act on the information provided to them.
- - Encourage people to engage in criminal activities or condone criminal behavior.
- Can
- - Help people understand how crimes are committed, provided that the response is not so detailed that it could be used to provide a roadmap for future crimes.
- - Help people understand how systems work that are used to prevent crimes, provided those descriptions do not provide detailed information on how to defeat those systems.
- O4: Guns and Illegal Weapons.
- Should not
- - Assist in the planning or execution of firearm or illegal weapons crimes, especially when the person indicates that they may act on the information provided to them.
- - Encourage people to engage in firearm or illegal weapons crimes or condone such behavior.
- Can
- - Discuss firearms and the arguments for and against firearm ownership.
- O5: Regulated or Controlled Substances.
- Should not
- - Encourage or assist people in the trafficking, consumption, or use of regulated or controlled substances, including but not limited to illegal drugs, tobacco, alcohol, and cannabis.
- - Assist or encourage people to create such substances when it is illegal to do so.
- Can
- - Discuss the use of regulated or controlled substances, and can provide general information on those substances (ex: what their chemical composition is and what their effects are).
- - Provide information on how those substances are manufactured, provided that the information is not so detailed as to provide step-by-step instructions for their creation.
- O6: Self-Harm.
- Should not
- - Encourage people to harm themselves.
- - Romanticize or condone self-harm or suicide.
- - Provide information regarding the methods of suicide or self-harm.
- - Provide any information or advice, other than information regarding appropriate health resources, to people who express or imply that they wish to harm themselves.
- Can
- - Provide general information regarding self-harm and suicide (ex: statistics, the mental health challenges faced by those who take these actions).
- Should
- - Provide information regarding appropriate health resources to people who imply or express the desire to harm themselves.
- <END UNSAFE CONTENT CATEGORIES>
- """
- PROMPT_USER_CONVERSATION = """
- <BEGIN CONVERSATION>
- $agent_type: $prompt
-
- <END CONVERSATION>
- """
- PROMPT_AGENT_CONVERSATION = """
- <BEGIN CONVERSATION>
- $user_prompt
- $agent_prompt
-
- <END CONVERSATION>
- """
- PROMPT_INSTRUCTIONS = """
- Provide your safety assessment for $agent_type in the above conversation:
- - First line must read 'safe' or 'unsafe'.
- - If unsafe, a second line must include a comma-separated list of violated categories."""
- USER_PROMPT_TEMPLATE = Template(f"{PROMPT_TASK}{PROMPT_CATEGORIES}{PROMPT_USER_CONVERSATION}{PROMPT_INSTRUCTIONS}")
- AGENT_PROMPT_TEMPLATE = Template(f"{PROMPT_TASK}{PROMPT_CATEGORIES}{PROMPT_AGENT_CONVERSATION}{PROMPT_INSTRUCTIONS}")
- def __init__(self, **kwargs):
- self.ckpt_dir = kwargs.get('guard_lama_path', None)
- self.tokenizer_path = self.ckpt_dir + "/tokenizer.model"
- pass
- def __call__(self, output_text, **kwargs):
- agent_type = kwargs.get('agent_type', AgentType.USER)
- user_prompt = kwargs.get('user_prompt', "")
- # defaults
- temperature = 1
- top_p = 1
- max_seq_len = 2048
- max_gen_len = 64
- max_batch_size = 4
- model_prompt = output_text.strip()
- if(agent_type == AgentType.AGENT):
- if user_prompt == "":
- print("empty user prompt for agent check, using complete prompt")
- return "Llama Guard", False, "Missing user_prompt from Agent response check"
- else:
- model_prompt = model_prompt.replace(user_prompt, "")
- user_prompt = f"User: {user_prompt}"
- agent_prompt = f"Agent: {model_prompt}"
- formatted_prompt = self.AGENT_PROMPT_TEMPLATE.substitute(user_prompt=user_prompt, agent_prompt=agent_prompt, agent_type=AgentType.AGENT.value)
- else:
- formatted_prompt = self.USER_PROMPT_TEMPLATE.substitute(prompt=model_prompt, agent_type=AgentType.USER.value)
-
- generator = Llama.build(
- ckpt_dir=self.ckpt_dir,
- tokenizer_path=self.tokenizer_path,
- max_seq_len=max_seq_len,
- max_batch_size=max_batch_size,
- )
-
- result = generator.single_prompt_completion(
- formatted_prompt,
- max_gen_len=max_gen_len,
- temperature=temperature,
- top_p=top_p,
- )
-
- splitted_result = result.split("\n")[0];
- is_safe = splitted_result == "safe"
-
- report = result
-
- return "Llama Guard", is_safe, report
-
- # Function to load the PeftModel for performance optimization
- # Function to determine which safety checker to use based on the options selected
- def get_safety_checker(enable_azure_content_safety,
- enable_sensitive_topics,
- enable_salesforce_content_safety,
- enable_llamaguard_content_safety,
- **kwargs):
- safety_checker = []
- if enable_azure_content_safety:
- safety_checker.append(AzureSaftyChecker(**kwargs))
- if enable_sensitive_topics:
- safety_checker.append(AuditNLGSensitiveTopics(**kwargs))
- if enable_salesforce_content_safety:
- safety_checker.append(SalesforceSafetyChecker(**kwargs))
- if enable_llamaguard_content_safety:
- safety_checker.append(LlamaGuardSafetyChecker(**kwargs))
- return safety_checker
|