123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import pytest
- from unittest.mock import patch
- EXPECTED_RESULTS = {
- "meta-llama/Llama-2-7b-hf":{
- "label": 1152,
- "pos": 31,
- },
- "meta-llama/Meta-Llama-3-8B":{
- "label": 40,
- "pos": 26,
- },
- }
- @pytest.mark.skip_missing_tokenizer
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.AutoTokenizer')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_grammar_dataset(step_lr, optimizer, get_model, tokenizer, train, setup_tokenizer, llama_version):
- from llama_recipes.finetuning import main
- setup_tokenizer(tokenizer)
- BATCH_SIZE = 8
- kwargs = {
- "model_name": llama_version,
- "batch_size_training": BATCH_SIZE,
- "val_batch_size": 1,
- "use_peft": False,
- "dataset": "grammar_dataset",
- "batching_strategy": "padding",
- }
- main(**kwargs)
- assert train.call_count == 1
- args, kwargs = train.call_args
- train_dataloader = args[1]
- eval_dataloader = args[2]
- VAL_SAMPLES = 2988
- TRAIN_SAMPLES = 13016
- assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
- assert len(eval_dataloader) == VAL_SAMPLES
- batch = next(iter(train_dataloader))
- assert "labels" in batch.keys()
- assert "input_ids" in batch.keys()
- assert "attention_mask" in batch.keys()
- assert batch["labels"][0][EXPECTED_RESULTS[llama_version]["pos"]-1] == -100
- assert batch["labels"][0][EXPECTED_RESULTS[llama_version]["pos"]] == EXPECTED_RESULTS[llama_version]["label"]
- token = args[3]
- assert batch["input_ids"][0][0] == token.bos_token_id
- assert batch["labels"][0][-1] == token.eos_token_id
- assert batch["input_ids"][0][-1] == token.eos_token_id
|