inference.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
  4. import fire
  5. import torch
  6. import os
  7. import sys
  8. import time
  9. from typing import List
  10. from transformers import LlamaTokenizer
  11. from safety_utils import get_safety_checker
  12. from model_utils import load_model, load_peft_model, load_llama_from_config
  13. def main(
  14. model_name,
  15. peft_model: str=None,
  16. quantization: bool=False,
  17. max_new_tokens =100, #The maximum numbers of tokens to generate
  18. prompt_file: str=None,
  19. seed: int=42, #seed value for reproducibility
  20. do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
  21. min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
  22. use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  23. top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  24. temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
  25. top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  26. repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
  27. length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
  28. enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
  29. enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
  30. enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5
  31. use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
  32. **kwargs
  33. ):
  34. if prompt_file is not None:
  35. assert os.path.exists(
  36. prompt_file
  37. ), f"Provided Prompt file does not exist {prompt_file}"
  38. with open(prompt_file, "r") as f:
  39. user_prompt = "\n".join(f.readlines())
  40. elif not sys.stdin.isatty():
  41. user_prompt = "\n".join(sys.stdin.readlines())
  42. else:
  43. print("No user prompt provided. Exiting.")
  44. sys.exit(1)
  45. # Set the seeds for reproducibility
  46. torch.cuda.manual_seed(seed)
  47. torch.manual_seed(seed)
  48. model = load_model(model_name, quantization)
  49. if use_fast_kernels:
  50. """
  51. Setting 'use_fast_kernels' will enable
  52. using of Flash Attention or Xformer memory-efficient kernels
  53. based on the hardware being used. This would speed up inference when used for batched inputs.
  54. """
  55. try:
  56. from optimum.bettertransformer import BetterTransformer
  57. except ImportError:
  58. print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")
  59. model = BetterTransformer.transform(model)
  60. tokenizer = LlamaTokenizer.from_pretrained(model_name)
  61. tokenizer.add_special_tokens(
  62. {
  63. "pad_token": "<PAD>",
  64. }
  65. )
  66. safety_checker = get_safety_checker(enable_azure_content_safety,
  67. enable_sensitive_topics,
  68. enable_saleforce_content_safety,
  69. )
  70. # Safety check of the user prompt
  71. safety_results = [check(user_prompt) for check in safety_checker]
  72. are_safe = all([r[1] for r in safety_results])
  73. if are_safe:
  74. print("User prompt deemed safe.")
  75. print(f"User prompt:\n{user_prompt}")
  76. else:
  77. print("User prompt deemed unsafe.")
  78. for method, is_safe, report in safety_results:
  79. if not is_safe:
  80. print(method)
  81. print(report)
  82. print("Skipping the inferece as the prompt is not safe.")
  83. sys.exit(1) # Exit the program with an error status
  84. if peft_model:
  85. model = load_peft_model(model, peft_model)
  86. model.eval()
  87. batch = tokenizer(user_prompt, return_tensors="pt")
  88. batch = {k: v.to("cuda") for k, v in batch.items()}
  89. start = time.perf_counter()
  90. with torch.no_grad():
  91. outputs = model.generate(
  92. **batch,
  93. max_new_tokens=max_new_tokens,
  94. do_sample=do_sample,
  95. top_p=top_p,
  96. temperature=temperature,
  97. min_length=min_length,
  98. use_cache=use_cache,
  99. top_k=top_k,
  100. repetition_penalty=repetition_penalty,
  101. length_penalty=length_penalty,
  102. **kwargs
  103. )
  104. e2e_inference_time = (time.perf_counter()-start)*1000
  105. print(f"the inference time is {e2e_inference_time} ms")
  106. output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
  107. # Safety check of the model output
  108. safety_results = [check(output_text) for check in safety_checker]
  109. are_safe = all([r[1] for r in safety_results])
  110. if are_safe:
  111. print("User input and model output deemed safe.")
  112. print(f"Model output:\n{output_text}")
  113. else:
  114. print("Model output deemed unsafe.")
  115. for method, is_safe, report in safety_results:
  116. if not is_safe:
  117. print(method)
  118. print(report)
  119. if __name__ == "__main__":
  120. fire.Fire(main)