pretrained_vllm_benchmark.py 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import csv
  4. import json
  5. import time
  6. import random
  7. import threading
  8. import numpy as np
  9. import requests
  10. import transformers
  11. import torch
  12. #imports for Azure content safety
  13. from azure.ai.contentsafety import ContentSafetyClient
  14. from azure.core.credentials import AzureKeyCredential
  15. from azure.core.exceptions import HttpResponseError
  16. from azure.ai.contentsafety.models import AnalyzeTextOptions
  17. from concurrent.futures import ThreadPoolExecutor, as_completed
  18. from typing import Dict, Tuple, List
  19. with open('input.jsonl') as input:
  20. prompt_data = json.load(input)
  21. with open('parameters.json') as parameters:
  22. params = json.load(parameters)
  23. MAX_NEW_TOKEN = params["MAX_NEW_TOKEN"]
  24. CONCURRENT_LEVELS = params["CONCURRENT_LEVELS"]
  25. # Replace with your own deployment
  26. MODEL_PATH = params["MODEL_PATH"]
  27. MODEL_HEADERS = params["MODEL_HEADERS"]
  28. SAFE_CHECK = params["SAFE_CHECK"]
  29. # Threshold for tokens per second below which we deem the query to be slow
  30. THRESHOLD_TPS = params["THRESHOLD_TPS"]
  31. # Replace with your own tokenizer
  32. TOKENIZER_PATH = params["TOKENIZER_PATH"]
  33. RANDOM_PROMPT_LENGTH = params["RANDOM_PROMPT_LENGTH"]
  34. TEMPERATURE = params["TEMPERATURE"]
  35. TOP_P = params["TOP_P"]
  36. # Add your model endpoints here, specify the port number.
  37. # Group of model endpoints - Send balanced requests to each endpoint for batch maximization.
  38. MODEL_ENDPOINTS = params["MODEL_ENDPOINTS"]
  39. #Get number of GPUs on this instance
  40. if torch.cuda.is_available():
  41. NUM_GPU = torch.cuda.device_count()
  42. else:
  43. print("No available GPUs")
  44. # This tokenizer is downloaded from Azure model catalog for each specific models. The main purpose is to decode the reponses for token calculation
  45. tokenizer = transformers.AutoTokenizer.from_pretrained(TOKENIZER_PATH)
  46. # Select vocabulary that is longer than 2 tokens (closer to real words) and close to the English (not foolproof)
  47. vocab = [token for token in tokenizer.get_vocab().keys() if len(token) > 2 and all(ord(c) < 128 for c in token)]
  48. def generate_random_prompt(num_tokens):
  49. generated_tokens_count = 0
  50. selected_tokens = ""
  51. while generated_tokens_count < num_tokens:
  52. selected_tokens += random.choice(vocab)
  53. selected_tokens += " "
  54. generated_tokens_count = len(tokenizer.encode(selected_tokens))
  55. return selected_tokens
  56. PROMPT = generate_random_prompt(RANDOM_PROMPT_LENGTH)
  57. num_token_input_prompt = len(tokenizer.encode(PROMPT))
  58. print(f"Number of token for input prompt: {num_token_input_prompt}")
  59. # Azure content safety analysis
  60. def analyze_prompt(input):
  61. start_time = time.time()
  62. # Obtain credentials
  63. key = "" #Add your AZURE_CONTENT_SAFETY_KEY
  64. endpoint = "" #Add your AZURE_CONTENT_SAFETY_ENDPOINT
  65. # Create a content safety client
  66. client = ContentSafetyClient(endpoint, AzureKeyCredential(key))
  67. # Create request
  68. request = AnalyzeTextOptions(text=input)
  69. # Analyze prompt
  70. try:
  71. response = client.analyze_text(request)
  72. except HttpResponseError as e:
  73. print("prompt failed due to content safety filtering.")
  74. if e.error:
  75. print(f"Error code: {e.error.code}")
  76. print(f"Error message: {e.error.message}")
  77. raise
  78. print(e)
  79. raise
  80. analyze_end_time = time.time()
  81. # The round trip latency for using Azure content safety check
  82. analyze_latency = (analyze_end_time - start_time) * 1000
  83. # Simple round-robin to dispatch requests into different containers
  84. executor_id = 0
  85. lock = threading.Lock()
  86. def generate_text() -> Tuple[int, int]:
  87. headers = MODEL_HEADERS
  88. payload = {
  89. "model" : MODEL_PATH,
  90. "messages" : [
  91. {
  92. "role": "user",
  93. "content": PROMPT
  94. }
  95. ],
  96. "stream" : False,
  97. "temperature" : TEMPERATURE,
  98. "top_p" : TOP_P,
  99. "max_tokens" : MAX_NEW_TOKEN
  100. }
  101. start_time = time.time()
  102. if(SAFE_CHECK):
  103. analyze_prompt(PROMPT)
  104. # Or add delay simulation as below for real world situation
  105. # time.sleep(random.uniform(0.3, 0.4))
  106. lock.acquire()
  107. global executor_id
  108. if executor_id != len(MODEL_ENDPOINTS)-1:
  109. executor_id += 1
  110. endpoint_id = executor_id
  111. else:
  112. executor_id = 0
  113. endpoint_id = executor_id
  114. lock.release()
  115. response = requests.post(MODEL_ENDPOINTS[endpoint_id], headers=headers, json=payload)
  116. if(SAFE_CHECK):
  117. analyze_prompt(PROMPT)
  118. # Or add delay simulation as below for real world situation
  119. # time.sleep(random.uniform(0.3, 0.4))
  120. end_time = time.time()
  121. # Convert to ms
  122. latency = (end_time - start_time) * 1000
  123. if response.status_code != 200:
  124. raise ValueError(f"Error: {response.content}")
  125. output = json.loads(response.content)["choices"][0]["message"]["content"]
  126. token_count = len(tokenizer.encode(output))
  127. return latency, token_count
  128. def evaluate_performance(concurrent_requests: int) -> Tuple[float, float, float, float, float, float, float, List[float]]:
  129. latencies = []
  130. total_output_tokens = 0
  131. output_tokens_per_second_each_request = []
  132. start_time = time.time()
  133. # Init multi-thread execution
  134. with ThreadPoolExecutor(max_workers=concurrent_requests) as executor:
  135. future_to_req = {executor.submit(generate_text): i for i in range(concurrent_requests)}
  136. for future in as_completed(future_to_req):
  137. latency, token_count = future.result()
  138. latencies.append(latency)
  139. total_output_tokens += token_count
  140. # Calculate tokens per second for this request
  141. tokens_per_sec = token_count / (latency / 1000)
  142. output_tokens_per_second_each_request.append(tokens_per_sec)
  143. end_time = time.time()
  144. total_time = end_time - start_time
  145. # RPS (requests per second)
  146. rps = concurrent_requests / total_time
  147. # Overall tokens per second
  148. output_tokens_per_second_overall = total_output_tokens / total_time
  149. input_tokens_per_second_overall = (num_token_input_prompt * concurrent_requests) / total_time
  150. output_tokens_per_second_per_gpu = output_tokens_per_second_overall / NUM_GPU
  151. input_tokens_per_second_per_gpu = input_tokens_per_second_overall / NUM_GPU
  152. p50_latency = np.percentile(latencies, 50)
  153. p99_latency = np.percentile(latencies, 99)
  154. # Count the number of requests below the token-per-second threshold
  155. below_threshold_count = sum(1 for tps in output_tokens_per_second_each_request if tps < THRESHOLD_TPS)
  156. output_tokens_per_second_per_request = sum(output_tokens_per_second_each_request)/len(output_tokens_per_second_each_request)
  157. return p50_latency, p99_latency, rps, output_tokens_per_second_overall, output_tokens_per_second_per_gpu, input_tokens_per_second_overall, input_tokens_per_second_per_gpu, output_tokens_per_second_per_request, below_threshold_count
  158. # Print markdown
  159. print("| Number of Concurrent Requests | P50 Latency (ms) | P99 Latency (ms) | RPS | Output Tokens per Second | Output Tokens per Second per GPU | Input Tokens per Second | Input Tokens per Second per GPU |Average Output Tokens per Second per Request | Number of Requests Below Threshold |")
  160. print("|-------------------------------|------------------|------------------|------------------|-------------------|---------------------------|---------------------|------------------------|-------------------------------------- | ---------------------------------- |")
  161. # Save to file
  162. csv_file = "performance_metrics.csv"
  163. with open(csv_file, "w", newline='') as f:
  164. writer = csv.writer(f)
  165. writer.writerow(["Number of Concurrent Requests", "P50 Latency (ms)", "P99 Latency (ms)", "RPS", "Output Tokens per Second", "Output Tokens per Second per GPU", "Input Tokens per Second", "Input Tokens per Second per GPU", "Average Output Tokens per Second per Request"])
  166. for level in CONCURRENT_LEVELS:
  167. p50_latency, p99_latency, rps, output_tokens_per_second_overall, output_tokens_per_second_per_gpu, input_tokens_per_second_overall, input_tokens_per_second_per_gpu, output_tokens_per_second_per_request, below_threshold_count = evaluate_performance(level)
  168. print(f"| {level} | {p50_latency:.2f} | {p99_latency:.2f} | {rps:.2f} | {output_tokens_per_second_overall:.2f} | {output_tokens_per_second_per_gpu:.2f} | {input_tokens_per_second_overall:.2f} | {input_tokens_per_second_per_gpu:.2f} | {output_tokens_per_second_per_request:.2f} | {below_threshold_count:.2f} |")
  169. writer.writerow([level, round(p50_latency, 2), round(p99_latency, 2), round(rps, 2), round(output_tokens_per_second_overall, 2), round(output_tokens_per_second_per_gpu, 2), round(input_tokens_per_second_overall, 2), round(input_tokens_per_second_per_gpu, 2), round(output_tokens_per_second_per_request, 2)])