test_custom_dataset.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import pytest
  4. from unittest.mock import patch
  5. from transformers import LlamaTokenizer
  6. EXPECTED_RESULTS={
  7. "meta-llama/Llama-2-7b-hf":{
  8. "example_1": "[INST] Who made Berlin [/INST] dunno",
  9. "example_2": "[INST] Quiero preparar una pizza de pepperoni, puedes darme los pasos para hacerla? [/INST] Claro!",
  10. },
  11. "hsramall/hsramall-7b-hf":{
  12. "example_1": "[INST] こんにちは! [/INST]こんにちは!",
  13. "example_2": "[INST] Как появляются деньги в экономике? Я знаю, что центробанк страны обычно регулирует базовую ставку валюты, но",
  14. },
  15. }
  16. def check_padded_entry(batch, tokenizer):
  17. seq_len = sum(batch["attention_mask"][0])
  18. assert seq_len < len(batch["attention_mask"][0])
  19. assert batch["labels"][0][0] == -100
  20. assert batch["labels"][0][seq_len-1] == tokenizer.eos_token_id
  21. assert batch["labels"][0][-1] == -100
  22. assert batch["input_ids"][0][0] == tokenizer.bos_token_id
  23. assert batch["input_ids"][0][-1] == tokenizer.eos_token_id
  24. @pytest.mark.skip_missing_tokenizer
  25. @patch('llama_recipes.finetuning.train')
  26. @patch('llama_recipes.finetuning.AutoTokenizer')
  27. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  28. @patch('llama_recipes.finetuning.optim.AdamW')
  29. @patch('llama_recipes.finetuning.StepLR')
  30. def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer, llama_version):
  31. from llama_recipes.finetuning import main
  32. setup_tokenizer(tokenizer)
  33. kwargs = {
  34. "dataset": "custom_dataset",
  35. "model_name": llama_version,
  36. "custom_dataset.file": "recipes/finetuning/datasets/custom_dataset.py",
  37. "custom_dataset.train_split": "validation",
  38. "batch_size_training": 2,
  39. "val_batch_size": 4,
  40. "use_peft": False,
  41. "batching_strategy": "padding"
  42. }
  43. main(**kwargs)
  44. assert train.call_count == 1
  45. args, kwargs = train.call_args
  46. train_dataloader = args[1]
  47. eval_dataloader = args[2]
  48. tokenizer = args[3]
  49. assert len(train_dataloader) == 1120
  50. assert len(eval_dataloader) == 1120 //2
  51. it = iter(eval_dataloader)
  52. batch = next(it)
  53. STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)
  54. assert STRING.startswith(EXPECTED_RESULTS[llama_version]["example_1"])
  55. assert batch["input_ids"].size(0) == 4
  56. assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
  57. check_padded_entry(batch, tokenizer)
  58. it = iter(train_dataloader)
  59. next(it)
  60. batch = next(it)
  61. STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)
  62. assert STRING.startswith(EXPECTED_RESULTS[llama_version]["example_2"])
  63. assert batch["input_ids"].size(0) == 2
  64. assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
  65. check_padded_entry(batch, tokenizer)
  66. @patch('llama_recipes.finetuning.train')
  67. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  68. @patch('llama_recipes.finetuning.AutoTokenizer.from_pretrained')
  69. @patch('llama_recipes.finetuning.optim.AdamW')
  70. @patch('llama_recipes.finetuning.StepLR')
  71. def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):
  72. from llama_recipes.finetuning import main
  73. tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
  74. kwargs = {
  75. "dataset": "custom_dataset",
  76. "custom_dataset.file": "recipes/finetuning/datasets/custom_dataset.py:get_unknown_dataset",
  77. "batch_size_training": 1,
  78. "use_peft": False,
  79. }
  80. with pytest.raises(AttributeError):
  81. main(**kwargs)