1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import json
- import matplotlib.pyplot as plt
- import argparse
- import os
- def plot_metric(data, metric_name, x_label, y_label, title, colors):
- plt.figure(figsize=(7, 6))
-
- plt.plot(data[f'train_epoch_{metric_name}'], label=f'Train Epoch {metric_name.capitalize()}', color=colors[0])
- plt.plot(data[f'val_epoch_{metric_name}'], label=f'Validation Epoch {metric_name.capitalize()}', color=colors[1])
- plt.xlabel(x_label)
- plt.ylabel(y_label)
- plt.title(f'Train and Validation Epoch {title}')
- plt.legend()
- plt.tight_layout()
- def plot_single_metric_by_step(data, metric_name, x_label, y_label, title, color):
- plt.plot(data[f'{metric_name}'], label=f'{title}', color=color)
- plt.xlabel(x_label)
- plt.ylabel(y_label)
- plt.title(title)
- plt.legend()
- plt.tight_layout()
- def plot_metrics_by_step(data, metric_name, x_label, y_label, colors):
- plt.figure(figsize=(14, 6))
- plt.subplot(1, 2, 1)
- plot_single_metric_by_step(data, f'train_step_{metric_name}', x_label, y_label, f'Train Step {metric_name.capitalize()}', colors[0])
- plt.subplot(1, 2, 2)
- plot_single_metric_by_step(data, f'val_step_{metric_name}', x_label, y_label, f'Validation Step {metric_name.capitalize()}', colors[1])
- plt.tight_layout()
-
- def plot_metrics(file_path):
- if not os.path.exists(file_path):
- print(f"File {file_path} does not exist.")
- return
- with open(file_path, 'r') as f:
- try:
- data = json.load(f)
- except json.JSONDecodeError:
- print("Invalid JSON file.")
- return
- directory = os.path.dirname(file_path)
- filename_prefix = os.path.basename(file_path).split('.')[0]
- plot_metric(data, 'loss', 'Epoch', 'Loss', 'Loss', ['b', 'r'])
- plt.savefig(os.path.join(directory, f"{filename_prefix}_train_and_validation_loss.png"))
- plt.close()
- plot_metric(data, 'perplexity', 'Epoch', 'Perplexity', 'Perplexity', ['g', 'm'])
- plt.savefig(os.path.join(directory, f"{filename_prefix}_train_and_validation_perplexity.png"))
- plt.close()
- plot_metrics_by_step(data, 'loss', 'Step', 'Loss', ['b', 'r'])
- plt.savefig(os.path.join(directory, f"{filename_prefix}_train_and_validation_loss_by_step.png"))
- plt.close()
- plot_metrics_by_step(data, 'perplexity', 'Step', 'Loss', ['g', 'm'])
- plt.savefig(os.path.join(directory, f"{filename_prefix}_train_and_validation_perplexity_by_step.png"))
- plt.close()
-
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description='Plot metrics from JSON file.')
- parser.add_argument('--file_path', required=True, type=str, help='Path to the metrics JSON file.')
- args = parser.parse_args()
- plot_metrics(args.file_path)
|