vLLM_inference.py 1.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. from accelerate import init_empty_weights, load_checkpoint_and_dispatch
  4. import fire
  5. import torch
  6. import os
  7. import sys
  8. from peft import PeftModel, PeftConfig
  9. from transformers import (
  10. LlamaConfig,
  11. LlamaTokenizer,
  12. LlamaForCausalLM
  13. )
  14. from vllm import LLM
  15. from vllm import LLM, SamplingParams
  16. torch.cuda.manual_seed(42)
  17. torch.manual_seed(42)
  18. def load_model(model_name, tp_size=1):
  19. llm = LLM(model_name, tensor_parallel_size=tp_size)
  20. return llm
  21. def main(
  22. model,
  23. max_new_tokens=100,
  24. user_prompt=None,
  25. top_p=0.9,
  26. temperature=0.8
  27. ):
  28. while True:
  29. if user_prompt is None:
  30. user_prompt = input("Enter your prompt: ")
  31. print(f"User prompt:\n{user_prompt}")
  32. print(f"sampling params: top_p {top_p} and temperature {temperature} for this inference request")
  33. sampling_param = SamplingParams(top_p=top_p, temperature=temperature, max_tokens=max_new_tokens)
  34. outputs = model.generate(user_prompt, sampling_params=sampling_param)
  35. print(f"model output:\n {user_prompt} {outputs[0].outputs[0].text}")
  36. user_prompt = input("Enter next prompt (press Enter to exit): ")
  37. if not user_prompt:
  38. break
  39. def run_script(
  40. model_name: str,
  41. peft_model=None,
  42. tp_size=1,
  43. max_new_tokens=100,
  44. user_prompt=None,
  45. top_p=0.9,
  46. temperature=0.8
  47. ):
  48. model = load_model(model_name, tp_size)
  49. main(model, max_new_tokens, user_prompt, top_p, temperature)
  50. if __name__ == "__main__":
  51. fire.Fire(run_script)