123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import torch
- from llama_recipes.utils.train_utils import train
- def test_gradient_accumulation(mocker):
- # import sys
- # sys.path.append('/home/ubuntu/llama-recipes/')
-
- model = mocker.MagicMock(name="model")
- model().loss.__truediv__().detach.return_value = torch.tensor(1)
- batch = {"input": torch.zeros(1)}
- train_dataloader = [batch, batch, batch, batch, batch]
- eval_dataloader = None
- tokenizer = mocker.MagicMock()
- optimizer = mocker.MagicMock()
- lr_scheduler = mocker.MagicMock()
- gradient_accumulation_steps = 1
- train_config = mocker.MagicMock()
- train_config.enable_fsdp = False
- train_config.use_fp16 = False
- train_config.run_validation = False
-
- train(
- model,
- train_dataloader,
- eval_dataloader,
- tokenizer,
- optimizer,
- lr_scheduler,
- gradient_accumulation_steps,
- train_config,
- )
-
- assert optimizer.zero_grad.call_count == 5
- optimizer.zero_grad.reset_mock()
-
- gradient_accumulation_steps = 2
- train(
- model,
- train_dataloader,
- eval_dataloader,
- tokenizer,
- optimizer,
- lr_scheduler,
- gradient_accumulation_steps,
- train_config,
- )
- assert optimizer.zero_grad.call_count == 3
|