config_utils.py 2.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import inspect
  4. from dataclasses import fields
  5. from peft import (
  6. LoraConfig,
  7. AdaptionPromptConfig,
  8. PrefixTuningConfig,
  9. )
  10. import configs.datasets as datasets
  11. from configs import lora_config, llama_adapter_config, prefix_config, train_config
  12. from .dataset_utils import DATASET_PREPROC
  13. def update_config(config, **kwargs):
  14. if isinstance(config, (tuple, list)):
  15. for c in config:
  16. update_config(c, **kwargs)
  17. else:
  18. for k, v in kwargs.items():
  19. if hasattr(config, k):
  20. setattr(config, k, v)
  21. elif "." in k:
  22. # allow --some_config.some_param=True
  23. config_name, param_name = k.split(".")
  24. if type(config).__name__ == config_name:
  25. if hasattr(config, param_name):
  26. setattr(config, param_name, v)
  27. else:
  28. # In case of specialized config we can warm user
  29. print(f"Warning: {config_name} does not accept parameter: {k}")
  30. elif isinstance(config, train_config):
  31. print(f"Warning: unknown parameter {k}")
  32. def generate_peft_config(train_config, kwargs):
  33. configs = (lora_config, llama_adapter_config, prefix_config)
  34. peft_configs = (LoraConfig, AdaptionPromptConfig, PrefixTuningConfig)
  35. names = tuple(c.__name__.rstrip("_config") for c in configs)
  36. assert train_config.peft_method in names, f"Peft config not found: {train_config.peft_method}"
  37. config = configs[names.index(train_config.peft_method)]
  38. update_config(config, **kwargs)
  39. params = {k.name: getattr(config, k.name) for k in fields(config)}
  40. peft_config = peft_configs[names.index(train_config.peft_method)](**params)
  41. return peft_config
  42. def generate_dataset_config(train_config, kwargs):
  43. names = tuple(DATASET_PREPROC.keys())
  44. assert train_config.dataset in names, f"Unknown dataset: {train_config.dataset}"
  45. dataset_config = {k:v for k, v in inspect.getmembers(datasets)}[train_config.dataset]
  46. update_config(dataset_config, **kwargs)
  47. return dataset_config