inference.py 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
  4. import fire
  5. import os
  6. import sys
  7. import time
  8. import gradio as gr
  9. import torch
  10. from transformers import AutoTokenizer
  11. from llama_recipes.inference.safety_utils import get_safety_checker, AgentType
  12. from llama_recipes.inference.model_utils import load_model, load_peft_model
  13. from accelerate.utils import is_xpu_available
  14. def main(
  15. model_name,
  16. peft_model: str=None,
  17. quantization: bool=False,
  18. max_new_tokens =100, #The maximum numbers of tokens to generate
  19. prompt_file: str=None,
  20. seed: int=42, #seed value for reproducibility
  21. do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
  22. min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
  23. use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  24. top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  25. temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
  26. top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  27. repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
  28. length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
  29. enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
  30. enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
  31. enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
  32. enable_llamaguard_content_safety: bool=False,
  33. max_padding_length: int=None, # the max padding length to be used with tokenizer padding the prompts.
  34. use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
  35. **kwargs
  36. ):
  37. def inference(user_prompt, temperature, top_p, top_k, max_new_tokens, **kwargs,):
  38. safety_checker = get_safety_checker(enable_azure_content_safety,
  39. enable_sensitive_topics,
  40. enable_salesforce_content_safety,
  41. enable_llamaguard_content_safety
  42. )
  43. # Safety check of the user prompt
  44. safety_results = [check(user_prompt) for check in safety_checker]
  45. are_safe = all([r[1] for r in safety_results])
  46. if are_safe:
  47. print("User prompt deemed safe.")
  48. print(f"User prompt:\n{user_prompt}")
  49. else:
  50. print("User prompt deemed unsafe.")
  51. for method, is_safe, report in safety_results:
  52. if not is_safe:
  53. print(method)
  54. print(report)
  55. print("Skipping the inference as the prompt is not safe.")
  56. sys.exit(1) # Exit the program with an error status
  57. # Set the seeds for reproducibility
  58. if is_xpu_available():
  59. torch.xpu.manual_seed(seed)
  60. else:
  61. torch.cuda.manual_seed(seed)
  62. torch.manual_seed(seed)
  63. model = load_model(model_name, quantization, use_fast_kernels)
  64. if peft_model:
  65. model = load_peft_model(model, peft_model)
  66. model.eval()
  67. tokenizer = AutoTokenizer.from_pretrained(model_name)
  68. tokenizer.pad_token = tokenizer.eos_token
  69. batch = tokenizer(user_prompt, padding='max_length', truncation=True, max_length=max_padding_length, return_tensors="pt")
  70. if is_xpu_available():
  71. batch = {k: v.to("xpu") for k, v in batch.items()}
  72. else:
  73. batch = {k: v.to("cuda") for k, v in batch.items()}
  74. start = time.perf_counter()
  75. with torch.no_grad():
  76. outputs = model.generate(
  77. **batch,
  78. max_new_tokens=max_new_tokens,
  79. do_sample=do_sample,
  80. top_p=top_p,
  81. temperature=temperature,
  82. min_length=min_length,
  83. use_cache=use_cache,
  84. top_k=top_k,
  85. repetition_penalty=repetition_penalty,
  86. length_penalty=length_penalty,
  87. **kwargs
  88. )
  89. e2e_inference_time = (time.perf_counter()-start)*1000
  90. print(f"the inference time is {e2e_inference_time} ms")
  91. output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
  92. # Safety check of the model output
  93. safety_results = [check(output_text, agent_type=AgentType.AGENT, user_prompt=user_prompt) for check in safety_checker]
  94. are_safe = all([r[1] for r in safety_results])
  95. if are_safe:
  96. print("User input and model output deemed safe.")
  97. print(f"Model output:\n{output_text}")
  98. else:
  99. print("Model output deemed unsafe.")
  100. for method, is_safe, report in safety_results:
  101. if not is_safe:
  102. print(method)
  103. print(report)
  104. return output_text
  105. if prompt_file is not None:
  106. assert os.path.exists(
  107. prompt_file
  108. ), f"Provided Prompt file does not exist {prompt_file}"
  109. with open(prompt_file, "r") as f:
  110. user_prompt = "\n".join(f.readlines())
  111. inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
  112. elif not sys.stdin.isatty():
  113. user_prompt = "\n".join(sys.stdin.readlines())
  114. inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
  115. else:
  116. gr.Interface(
  117. fn=inference,
  118. inputs=[
  119. gr.components.Textbox(
  120. lines=9,
  121. label="User Prompt",
  122. placeholder="none",
  123. ),
  124. gr.components.Slider(
  125. minimum=0, maximum=1, value=1.0, label="Temperature"
  126. ),
  127. gr.components.Slider(
  128. minimum=0, maximum=1, value=1.0, label="Top p"
  129. ),
  130. gr.components.Slider(
  131. minimum=0, maximum=100, step=1, value=50, label="Top k"
  132. ),
  133. gr.components.Slider(
  134. minimum=1, maximum=2000, step=1, value=200, label="Max tokens"
  135. ),
  136. ],
  137. outputs=[
  138. gr.components.Textbox(
  139. lines=5,
  140. label="Output",
  141. )
  142. ],
  143. title="Meta Llama3 Playground",
  144. description="https://github.com/facebookresearch/llama-recipes",
  145. ).queue().launch(server_name="0.0.0.0", share=True)
  146. if __name__ == "__main__":
  147. fire.Fire(main)