chat_completion.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
  4. import fire
  5. import os
  6. import sys
  7. import torch
  8. from transformers import AutoTokenizer
  9. from llama_recipes.inference.chat_utils import read_dialogs_from_file
  10. from llama_recipes.inference.model_utils import load_model, load_peft_model
  11. from llama_recipes.inference.safety_utils import get_safety_checker
  12. from accelerate.utils import is_xpu_available
  13. def main(
  14. model_name,
  15. peft_model: str=None,
  16. quantization: bool=False,
  17. max_new_tokens =256, #The maximum numbers of tokens to generate
  18. min_new_tokens:int=0, #The minimum numbers of tokens to generate
  19. prompt_file: str=None,
  20. seed: int=42, #seed value for reproducibility
  21. safety_score_threshold: float=0.5,
  22. do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
  23. use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  24. top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  25. temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
  26. top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  27. repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
  28. length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
  29. enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
  30. enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
  31. enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5
  32. use_fast_kernels: bool = False, # Enable using SDPA from PyTorch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
  33. enable_llamaguard_content_safety: bool = False,
  34. **kwargs
  35. ):
  36. if prompt_file is not None:
  37. assert os.path.exists(
  38. prompt_file
  39. ), f"Provided Prompt file does not exist {prompt_file}"
  40. dialogs= read_dialogs_from_file(prompt_file)
  41. elif not sys.stdin.isatty():
  42. dialogs = "\n".join(sys.stdin.readlines())
  43. else:
  44. print("No user prompt provided. Exiting.")
  45. sys.exit(1)
  46. print(f"User dialogs:\n{dialogs}")
  47. print("\n==================================\n")
  48. # Set the seeds for reproducibility
  49. if is_xpu_available():
  50. torch.xpu.manual_seed(seed)
  51. else:
  52. torch.cuda.manual_seed(seed)
  53. torch.manual_seed(seed)
  54. model = load_model(model_name, quantization, use_fast_kernels)
  55. if peft_model:
  56. model = load_peft_model(model, peft_model)
  57. tokenizer = AutoTokenizer.from_pretrained(model_name)
  58. tokenizer.add_special_tokens(
  59. {
  60. "pad_token": "<PAD>",
  61. }
  62. )
  63. chats = tokenizer.apply_chat_template(dialogs)
  64. with torch.no_grad():
  65. for idx, chat in enumerate(chats):
  66. safety_checker = get_safety_checker(enable_azure_content_safety,
  67. enable_sensitive_topics,
  68. enable_saleforce_content_safety,
  69. enable_llamaguard_content_safety,
  70. )
  71. # Safety check of the user prompt
  72. safety_results = [check(dialogs[idx][0]["content"]) for check in safety_checker]
  73. are_safe = all([r[1] for r in safety_results])
  74. if are_safe:
  75. print(f"User prompt deemed safe.")
  76. print("User prompt:\n", dialogs[idx][0]["content"])
  77. print("\n==================================\n")
  78. else:
  79. print("User prompt deemed unsafe.")
  80. for method, is_safe, report in safety_results:
  81. if not is_safe:
  82. print(method)
  83. print(report)
  84. print("Skipping the inferece as the prompt is not safe.")
  85. sys.exit(1) # Exit the program with an error status
  86. tokens= torch.tensor(chat).long()
  87. tokens= tokens.unsqueeze(0)
  88. if is_xpu_available():
  89. tokens= tokens.to("xpu:0")
  90. else:
  91. tokens= tokens.to("cuda:0")
  92. outputs = model.generate(
  93. input_ids=tokens,
  94. max_new_tokens=max_new_tokens,
  95. do_sample=do_sample,
  96. top_p=top_p,
  97. temperature=temperature,
  98. use_cache=use_cache,
  99. top_k=top_k,
  100. repetition_penalty=repetition_penalty,
  101. length_penalty=length_penalty,
  102. **kwargs
  103. )
  104. output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
  105. # Safety check of the model output
  106. safety_results = [check(output_text) for check in safety_checker]
  107. are_safe = all([r[1] for r in safety_results])
  108. if are_safe:
  109. print("User input and model output deemed safe.")
  110. print(f"Model output:\n{output_text}")
  111. print("\n==================================\n")
  112. else:
  113. print("Model output deemed unsafe.")
  114. for method, is_safe, report in safety_results:
  115. if not is_safe:
  116. print(method)
  117. print(report)
  118. if __name__ == "__main__":
  119. fire.Fire(main)