test_custom_dataset.py 3.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import pytest
  4. from unittest.mock import patch
  5. @patch('llama_recipes.finetuning.train')
  6. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  7. @patch('llama_recipes.finetuning.optim.AdamW')
  8. @patch('llama_recipes.finetuning.StepLR')
  9. def test_custom_dataset(step_lr, optimizer, get_model, train, mocker):
  10. from llama_recipes.finetuning import main
  11. kwargs = {
  12. "dataset": "custom_dataset",
  13. "model_name": "decapoda-research/llama-7b-hf", # We use the tokenizer as a surrogate for llama2 tokenizer here
  14. "custom_dataset.file": "examples/custom_dataset.py",
  15. "custom_dataset.train_split": "validation",
  16. "batch_size_training": 2,
  17. "val_batch_size": 4,
  18. "use_peft": False,
  19. }
  20. main(**kwargs)
  21. assert train.call_count == 1
  22. args, kwargs = train.call_args
  23. train_dataloader = args[1]
  24. eval_dataloader = args[2]
  25. tokenizer = args[3]
  26. assert len(train_dataloader) == 1120
  27. assert len(eval_dataloader) == 1120 //2
  28. it = iter(eval_dataloader)
  29. STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True)
  30. EXPECTED_STRING = "[INST] Who made Berlin [/INST] dunno"
  31. assert STRING.startswith(EXPECTED_STRING)
  32. # assert next(it)["input_ids"].size(0) == 4
  33. # it = iter(train_dataloader)
  34. # entry = next(it)
  35. # STRING = tokenizer.decode(entry["input_ids"][0], skip_special_tokens=True)
  36. # EXPECTED_STRING = "[INST] Напиши функцию на языке swift, которая сортирует массив целых чисел, а затем выводит его на экран [/INST] Вот функция, "
  37. # assert STRING.startswith(EXPECTED_STRING)
  38. # assert entry["labels"][0][:10].tolist() == 10*[-100]
  39. next(it)
  40. next(it)
  41. STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True)
  42. EXPECTED_STRING = "[INST] Implementa el algoritmo `bubble sort` en C. [/INST] xdxdxd"
  43. assert STRING.startswith(EXPECTED_STRING)
  44. assert "labels" in next(iter(train_dataloader)).keys()
  45. assert "input_ids" in next(iter(train_dataloader)).keys()
  46. assert "attention_mask" in next(iter(train_dataloader)).keys()
  47. @patch('llama_recipes.finetuning.train')
  48. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  49. @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  50. @patch('llama_recipes.finetuning.optim.AdamW')
  51. @patch('llama_recipes.finetuning.StepLR')
  52. def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):
  53. from llama_recipes.finetuning import main
  54. tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
  55. kwargs = {
  56. "dataset": "custom_dataset",
  57. "custom_dataset.file": "examples/custom_dataset.py:get_unknown_dataset",
  58. "batch_size_training": 1,
  59. "use_peft": False,
  60. }
  61. with pytest.raises(AttributeError):
  62. main(**kwargs)