custom_dataset.py 3.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # For dataset details visit: https://huggingface.co/datasets/samsum
  4. import copy
  5. import datasets
  6. import itertools
  7. from llama_recipes.datasets.utils import Concatenator
  8. B_INST, E_INST = "[INST]", "[/INST]"
  9. def tokenize_dialog(dialog, tokenizer):
  10. prompt_tokens = [tokenizer.encode(f"{tokenizer.bos_token}{B_INST} {(prompt['content']).strip()} {E_INST}", add_special_tokens=False) for prompt in dialog[::2]]
  11. answer_tokens = [tokenizer.encode(f"{answer['content'].strip()} {tokenizer.eos_token}", add_special_tokens=False) for answer in dialog[1::2]]
  12. answer_tokens = [{k:v[1:] for k,v in items.items()} for items in answer_tokens]
  13. dialog_tokens = list(itertools.chain.from_iterable(zip(prompt_tokens, answer_tokens)))
  14. #Add labels, convert prompt token to -100 in order to ignore in loss function
  15. dialog_tokens = [dict(c, labels=len(c["input_ids"])*[-100,]if i % 2 == 0 else c["input_ids"]) for i,c in enumerate(dialog_tokens)]
  16. combined_tokens = {}
  17. for k in dialog_tokens[0].keys():
  18. combined_tokens[k] = list(itertools.chain(*(t[k] for t in dialog_tokens)))
  19. return combined_tokens
  20. def get_custom_dataset(dataset_config, tokenizer, split):
  21. dataset = datasets.load_dataset("OpenAssistant/oasst1", split=split)
  22. dataset = dataset.map(lambda sample: {
  23. "message_id": sample["message_id"],
  24. "parent_id": sample["parent_id"],
  25. "text": sample["text"],
  26. },
  27. batched=True,
  28. remove_columns=list(dataset.features),)
  29. nodes = {}
  30. messages = {}
  31. root_ids = []
  32. for data in dataset:
  33. if data["parent_id"]:
  34. nodes[data["parent_id"]] = nodes.get(data["parent_id"], []) + [data["message_id"]]
  35. else:
  36. root_ids.append(data["message_id"])
  37. messages[data["message_id"]]=data["text"]
  38. def follow(thread, current_id):
  39. thread = copy.copy(thread) + [messages[current_id]]
  40. if current_id in nodes:
  41. new_threads = []
  42. for next_id in nodes[current_id]:
  43. new_threads += follow(thread, next_id)
  44. return new_threads
  45. else:
  46. return [thread]
  47. def get_threads_from_root(root_id):
  48. all_threads = []
  49. thread = [messages[root_id]]
  50. for cid in nodes[root_id]:
  51. all_threads += follow(thread, cid)
  52. return all_threads
  53. dataset = dataset.filter(lambda x: x["message_id"] in root_ids)
  54. dataset = dataset.map(lambda x: {"thread": get_threads_from_root(x["message_id"])}, remove_columns=list(dataset.features))
  55. dataset = dataset.map(lambda x: {"thread": [i for row in x["thread"] for i in row]}, batched=True)
  56. def to_dialog(thread):
  57. dialog = []
  58. for i, content in enumerate(thread):
  59. dialog.append({
  60. "role": "user" if i % 2 == 0 else "assistant",
  61. "content": content,
  62. })
  63. return {"dialog": dialog}
  64. dataset = dataset.map(lambda x: to_dialog(x["thread"]), remove_columns=list(dataset.features))
  65. dataset = dataset.map(lambda x: tokenize_dialog(x["dialog"], tokenizer), remove_columns=list(dataset.features))
  66. return dataset