123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- from unittest.mock import patch
- from transformers import LlamaTokenizer
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaTokenizer')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker):
- from llama_recipes.finetuning import main
- #Align with Llama 2 tokenizer
- tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
- tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>'})
- tokenizer.from_pretrained.return_value.bos_token_id = 1
- tokenizer.from_pretrained.return_value.eos_token_id = 2
- BATCH_SIZE = 8
- kwargs = {
- "model_name": "decapoda-research/llama-7b-hf",
- "batch_size_training": 8,
- "val_batch_size": 1,
- "use_peft": False,
- "dataset": "samsum_dataset",
- "batching_strategy": "padding",
- }
- main(**kwargs)
- assert train.call_count == 1
- args, kwargs = train.call_args
- train_dataloader = args[1]
- eval_dataloader = args[2]
- VAL_SAMPLES = 818
- TRAIN_SAMPLES = 14732
- assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
- assert len(eval_dataloader) == VAL_SAMPLES
- batch = next(iter(train_dataloader))
- assert "labels" in batch.keys()
- assert "input_ids" in batch.keys()
- assert "attention_mask" in batch.keys()
- assert batch["labels"][0][268] == -100
- assert batch["labels"][0][269] == 22291
- assert batch["input_ids"][0][0] == 1
- assert batch["labels"][0][-1] == 2
- assert batch["input_ids"][0][-1] == 2
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaTokenizer')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_samsum_dataset_packing(step_lr, optimizer, get_model, tokenizer, train, mocker):
- from llama_recipes.finetuning import main
- #Align with Llama 2 tokenizer
- tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
- tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>'})
- tokenizer.from_pretrained.return_value.bos_token_id = 1
- tokenizer.from_pretrained.return_value.eos_token_id = 2
- BATCH_SIZE = 8
- kwargs = {
- "model_name": "decapoda-research/llama-7b-hf",
- "batch_size_training": 8,
- "val_batch_size": 1,
- "use_peft": False,
- "dataset": "samsum_dataset",
- "batching_strategy": "packing",
- }
- main(**kwargs)
- assert train.call_count == 1
- args, kwargs = train.call_args
- train_dataloader = args[1]
- eval_dataloader = args[2]
- assert len(train_dataloader) == 96
- assert len(eval_dataloader) == 42
- batch = next(iter(train_dataloader))
- assert "labels" in batch.keys()
- assert "input_ids" in batch.keys()
- assert "attention_mask" in batch.keys()
- assert batch["labels"][0].size(0) == 4096
- assert batch["input_ids"][0].size(0) == 4096
- assert batch["attention_mask"][0].size(0) == 4096
|