llama_finetuning.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import os
  4. import sys
  5. from typing import List, Union
  6. import fire
  7. import torch
  8. import transformers
  9. from datasets import load_dataset
  10. import os.path as osp
  11. from tqdm import tqdm
  12. # Unused imports removed
  13. from utils import fsdp_auto_wrap_policy
  14. from transformers import (
  15. LlamaForCausalLM,
  16. LlamaTokenizer,
  17. AutoModelForCausalLM,
  18. AutoModelForSeq2SeqLM,
  19. AutoTokenizer,
  20. default_data_collator,
  21. BitsAndBytesConfig
  22. )
  23. import torch.distributed as dist
  24. # Unused imports removed
  25. from utils.train_utils import (
  26. set_tokenizer_params,
  27. train,
  28. evaluation,
  29. freeze_transformer_layers,
  30. check_frozen_layers_peft_model,
  31. setup,
  32. setup_environ_flags,
  33. cleanup,
  34. clear_gpu_cache,
  35. get_parameter_dtypes,
  36. print_model_size,
  37. get_policies
  38. )
  39. from utils.dataset_utils import get_preprocessed_dataset
  40. from utils.config_utils import (
  41. update_config,
  42. generate_peft_config,
  43. generate_dataset_config,
  44. )
  45. from peft import get_peft_model, TaskType, prepare_model_for_int8_training
  46. import configs
  47. from torch.distributed.fsdp import (
  48. FullyShardedDataParallel as FSDP,
  49. MixedPrecision,
  50. StateDictType,
  51. )
  52. from torch.utils.data import DistributedSampler
  53. from torch.distributed.fsdp._common_utils import _is_fsdp_flattened
  54. import policies
  55. from policies import AnyPrecisionAdamW
  56. from configs import fsdp_config, train_config
  57. import torch.optim as optim
  58. from torch.optim.lr_scheduler import StepLR
  59. from pkg_resources import packaging
  60. import torch
  61. import torch.cuda.nccl as nccl
  62. import torch.distributed as dist
  63. from transformers.models.t5.modeling_t5 import T5Block
  64. from transformers.models.llama.modeling_llama import LlamaDecoderLayer
  65. def main(**kwargs):
  66. # Update the configuration for the training and sharding process
  67. update_config((train_config, fsdp_config), **kwargs)
  68. # Set the seeds for reproducibility
  69. torch.cuda.manual_seed(train_config.seed)
  70. torch.manual_seed(train_config.seed)
  71. if train_config.enable_fsdp:
  72. setup()
  73. # torchrun specific
  74. local_rank = int(os.environ["LOCAL_RANK"])
  75. rank = int(os.environ["RANK"])
  76. world_size = int(os.environ["WORLD_SIZE"])
  77. if torch.distributed.is_initialized():
  78. torch.cuda.set_device(rank)
  79. setup_environ_flags(rank)
  80. # Calculate gradient accumulation steps
  81. gradient_accumulation_steps = train_config.batch_size_training // train_config.micro_batch_size
  82. # Load the pre-trained model and setup its configuration
  83. model = LlamaForCausalLM.from_pretrained(
  84. train_config.model_name,
  85. load_in_8bit=True if train_config.quantization else None,
  86. device_map="auto" if train_config.quantization else None,
  87. )
  88. print_model_size(model, train_config, rank if train_config.enable_fsdp else 0)
  89. # Prepare the model for int8 training if quantization is enabled
  90. if train_config.quantization:
  91. model = prepare_model_for_int8_training(model)
  92. # Convert the model to bfloat16 if fsdp and pure_bf16 is enabled
  93. if train_config.enable_fsdp and fsdp_config.pure_bf16:
  94. model.to(torch.bfloat16)
  95. # Load the tokenizer and add special tokens
  96. tokenizer = LlamaTokenizer.from_pretrained(train_config.model_name)
  97. tokenizer.add_special_tokens(
  98. {
  99. "eos_token": "</s>",
  100. "bos_token": "</s>",
  101. "unk_token": "</s>",
  102. "pad_token": '[PAD]',
  103. }
  104. )
  105. if train_config.use_peft:
  106. peft_config = generate_peft_config(train_config, kwargs)
  107. model = get_peft_model(model, peft_config)
  108. model.print_trainable_parameters()
  109. #setting up FSDP if enable_fsdp is enabled
  110. if train_config.enable_fsdp:
  111. if not train_config.use_peft and train_config.freeze_layers:
  112. freeze_transformer_layers(train_config.num_freeze_layers)
  113. mixed_precision_policy, wrapping_policy = get_policies(fsdp_config, rank)
  114. my_auto_wrapping_policy = fsdp_auto_wrap_policy(model, LlamaDecoderLayer)
  115. model = FSDP(
  116. model,
  117. auto_wrap_policy= my_auto_wrapping_policy if train_config.use_peft else wrapping_policy,
  118. mixed_precision=mixed_precision_policy if not fsdp_config.pure_bf16 else None,
  119. sharding_strategy=fsdp_config.sharding_strategy,
  120. device_id=torch.cuda.current_device(),
  121. limit_all_gathers=False,
  122. )
  123. if fsdp_config.fsdp_activation_checkpointing:
  124. policies.apply_fsdp_checkpointing(model)
  125. elif not train_config.quantization and not train_config.enable_fsdp:
  126. model.to("cuda")
  127. dataset_config = generate_dataset_config(train_config, kwargs)
  128. # Load and preprocess the dataset for training and validation
  129. dataset_train = get_preprocessed_dataset(
  130. tokenizer,
  131. dataset_config,
  132. split="train",
  133. )
  134. if not train_config.enable_fsdp or rank == 0:
  135. print(f"--> Training Set Length = {len(dataset_train)}")
  136. dataset_val = get_preprocessed_dataset(
  137. tokenizer,
  138. dataset_config,
  139. split="test",
  140. )
  141. if not train_config.enable_fsdp or rank == 0:
  142. print(f"--> Validation Set Length = {len(dataset_val)}")
  143. train_sampler = None
  144. val_sampler = None
  145. if train_config.enable_fsdp:
  146. train_sampler = DistributedSampler(
  147. dataset_train,
  148. rank=dist.get_rank(),
  149. num_replicas=dist.get_world_size(),
  150. shuffle=True,
  151. )
  152. if train_config.run_validation:
  153. val_sampler = DistributedSampler(
  154. dataset_val,
  155. rank=dist.get_rank(),
  156. num_replicas=dist.get_world_size(),
  157. )
  158. # Create DataLoaders for the training and validation dataset
  159. train_dataloader = torch.utils.data.DataLoader(
  160. dataset_train,
  161. batch_size=train_config.batch_size_training,
  162. num_workers=train_config.num_workers_dataloader,
  163. pin_memory=True,
  164. sampler=train_sampler if train_sampler else None,
  165. drop_last=True,
  166. collate_fn=default_data_collator,
  167. )
  168. if train_config.run_validation:
  169. eval_dataloader = torch.utils.data.DataLoader(
  170. dataset_val,
  171. batch_size=train_config.val_batch_size,
  172. num_workers=train_config.num_workers_dataloader,
  173. pin_memory=True,
  174. sampler=val_sampler if val_sampler else None,
  175. drop_last=True,
  176. collate_fn=default_data_collator,
  177. )
  178. # Initialize the optimizer and learning rate scheduler
  179. if fsdp_config.pure_bf16 and fsdp_config.optimizer == "anyprecision":
  180. optimizer = AnyPrecisionAdamW(
  181. model.parameters(),
  182. lr=train_config.lr,
  183. momentum_dtype=torch.bfloat16,
  184. variance_dtype=torch.bfloat16,
  185. use_kahan_summation=False,
  186. )
  187. else:
  188. optimizer = optim.AdamW(
  189. model.parameters(),
  190. lr=train_config.lr,
  191. weight_decay=0.0,
  192. )
  193. scheduler = StepLR(optimizer, step_size=1, gamma=train_config.gamma)
  194. # Start the training process
  195. results = train(
  196. model,
  197. train_dataloader,
  198. eval_dataloader,
  199. tokenizer,
  200. optimizer,
  201. scheduler,
  202. gradient_accumulation_steps,
  203. train_config,
  204. fsdp_config if train_config.enable_fsdp else None,
  205. local_rank if train_config.enable_fsdp else None,
  206. rank if train_config.enable_fsdp else None,
  207. )
  208. if not train_config.enable_fsdp or rank==0:
  209. [print(f'Key: {k}, Value: {v}') for k, v in results.items()]
  210. if __name__ == "__main__":
  211. fire.Fire(main)