inference.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
  4. import fire
  5. import torch
  6. import os
  7. import sys
  8. from typing import List
  9. from transformers import LlamaTokenizer
  10. from safety_utils import get_safety_checker
  11. from model_utils import load_model, load_peft_model
  12. def main(
  13. model_name,
  14. peft_model: str=None,
  15. quantization: bool=False,
  16. max_new_tokens =100, #The maximum numbers of tokens to generate
  17. prompt_file: str=None,
  18. seed: int=42, #seed value for reproducibility
  19. do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
  20. min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
  21. use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  22. top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  23. temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
  24. top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  25. repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
  26. length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
  27. enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
  28. enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
  29. enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5
  30. **kwargs
  31. ):
  32. if prompt_file is not None:
  33. assert os.path.exists(
  34. prompt_file
  35. ), f"Provided Prompt file does not exist {prompt_file}"
  36. with open(prompt_file, "r") as f:
  37. user_prompt = "\n".join(f.readlines())
  38. elif not sys.stdin.isatty():
  39. user_prompt = "\n".join(sys.stdin.readlines())
  40. else:
  41. print("No user prompt provided. Exiting.")
  42. sys.exit(1)
  43. # Set the seeds for reproducibility
  44. torch.cuda.manual_seed(seed)
  45. torch.manual_seed(seed)
  46. model = load_model(model_name, quantization)
  47. tokenizer = LlamaTokenizer.from_pretrained(model_name)
  48. tokenizer.add_special_tokens(
  49. {
  50. "eos_token": "</s>",
  51. "bos_token": "</s>",
  52. "unk_token": "</s>",
  53. "pad_token": "[PAD]",
  54. }
  55. )
  56. safety_checker = get_safety_checker(enable_azure_content_safety,
  57. enable_sensitive_topics,
  58. enable_saleforce_content_safety,
  59. )
  60. # Safety check of the user prompt
  61. safety_results = [check(user_prompt) for check in safety_checker]
  62. are_safe = all([r[1] for r in safety_results])
  63. if are_safe:
  64. print("User prompt deemed safe.")
  65. print(f"User prompt:\n{user_prompt}")
  66. else:
  67. print("User prompt deemed unsafe.")
  68. for method, is_safe, report in safety_results:
  69. if not is_safe:
  70. print(method)
  71. print(report)
  72. print("Skipping the inferece as the prompt is not safe.")
  73. sys.exit(1) # Exit the program with an error status
  74. if peft_model:
  75. model = load_peft_model(model, peft_model)
  76. model.eval()
  77. batch = tokenizer(user_prompt, return_tensors="pt")
  78. batch = {k: v.to("cuda") for k, v in batch.items()}
  79. with torch.no_grad():
  80. outputs = model.generate(
  81. **batch,
  82. max_new_tokens=max_new_tokens,
  83. do_sample=do_sample,
  84. top_p=top_p,
  85. temperature=temperature,
  86. min_length=min_length,
  87. use_cache=use_cache,
  88. top_k=top_k,
  89. repetition_penalty=repetition_penalty,
  90. length_penalty=length_penalty,
  91. **kwargs
  92. )
  93. output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
  94. # Safety check of the model output
  95. safety_results = [check(output_text) for check in safety_checker]
  96. are_safe = all([r[1] for r in safety_results])
  97. if are_safe:
  98. print("User input and model output deemed safe.")
  99. print(f"Model output:\n{output_text}")
  100. else:
  101. print("Model output deemed unsafe.")
  102. for method, is_safe, report in safety_results:
  103. if not is_safe:
  104. print(method)
  105. print(report)
  106. if __name__ == "__main__":
  107. fire.Fire(main)