llama_finetuning.py 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import os
  4. import sys
  5. from typing import List, Union
  6. import fire
  7. import torch
  8. import transformers
  9. from datasets import load_dataset
  10. import os.path as osp
  11. from tqdm import tqdm
  12. # Unused imports removed
  13. from utils import fsdp_auto_wrap_policy
  14. from transformers import (
  15. LlamaForCausalLM,
  16. LlamaTokenizer,
  17. AutoModelForCausalLM,
  18. AutoModelForSeq2SeqLM,
  19. AutoTokenizer,
  20. default_data_collator,
  21. BitsAndBytesConfig
  22. )
  23. import torch.distributed as dist
  24. # Unused imports removed
  25. from utils.train_utils import (
  26. set_tokenizer_params,
  27. train,
  28. evaluation,
  29. freeze_transformer_layers,
  30. check_frozen_layers_peft_model,
  31. setup,
  32. setup_environ_flags,
  33. cleanup,
  34. clear_gpu_cache,
  35. get_parameter_dtypes,
  36. print_model_size,
  37. get_policies
  38. )
  39. from utils.dataset_utils import get_preprocessed_dataset
  40. from utils.config_utils import (
  41. update_config,
  42. generate_peft_config,
  43. generate_dataset_config,
  44. )
  45. from peft import get_peft_model, TaskType, prepare_model_for_int8_training
  46. import configs
  47. from torch.distributed.fsdp import (
  48. FullyShardedDataParallel as FSDP,
  49. MixedPrecision,
  50. )
  51. from torch.utils.data import DistributedSampler
  52. import policies
  53. from policies import AnyPrecisionAdamW
  54. from configs import fsdp_config, train_config
  55. import torch.optim as optim
  56. from torch.optim.lr_scheduler import StepLR
  57. from pkg_resources import packaging
  58. import torch
  59. import torch.cuda.nccl as nccl
  60. import torch.distributed as dist
  61. from transformers.models.llama.modeling_llama import LlamaDecoderLayer
  62. def main(**kwargs):
  63. # Update the configuration for the training and sharding process
  64. update_config((train_config, fsdp_config), **kwargs)
  65. # Set the seeds for reproducibility
  66. torch.cuda.manual_seed(train_config.seed)
  67. torch.manual_seed(train_config.seed)
  68. if train_config.enable_fsdp:
  69. setup()
  70. # torchrun specific
  71. local_rank = int(os.environ["LOCAL_RANK"])
  72. rank = int(os.environ["RANK"])
  73. world_size = int(os.environ["WORLD_SIZE"])
  74. if torch.distributed.is_initialized():
  75. torch.cuda.set_device(rank)
  76. setup_environ_flags(rank)
  77. # Calculate gradient accumulation steps
  78. gradient_accumulation_steps = train_config.batch_size_training // train_config.micro_batch_size
  79. # Load the pre-trained model and setup its configuration
  80. model = LlamaForCausalLM.from_pretrained(
  81. train_config.model_name,
  82. load_in_8bit=True if train_config.quantization else None,
  83. device_map="auto" if train_config.quantization else None,
  84. )
  85. if train_config.enable_fsdp and train_config.use_fast_kernels:
  86. """
  87. For FSDP and FSDP+PEFT, setting 'use_fast_kernels' will enable
  88. using of Flash Attention or Xformer memory-efficient kernels
  89. based on the hardware being used. This would speed up fine-tuning.
  90. """
  91. try:
  92. from optimum.bettertransformer import BetterTransformer
  93. model = BetterTransformer.transform(model)
  94. except ImportError:
  95. print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")
  96. print_model_size(model, train_config, rank if train_config.enable_fsdp else 0)
  97. # Prepare the model for int8 training if quantization is enabled
  98. if train_config.quantization:
  99. model = prepare_model_for_int8_training(model)
  100. # Convert the model to bfloat16 if fsdp and pure_bf16 is enabled
  101. if train_config.enable_fsdp and fsdp_config.pure_bf16:
  102. model.to(torch.bfloat16)
  103. # Load the tokenizer and add special tokens
  104. tokenizer = LlamaTokenizer.from_pretrained(train_config.model_name)
  105. tokenizer.add_special_tokens(
  106. {
  107. "pad_token": "<PAD>",
  108. }
  109. )
  110. if train_config.use_peft:
  111. peft_config = generate_peft_config(train_config, kwargs)
  112. model = get_peft_model(model, peft_config)
  113. model.print_trainable_parameters()
  114. #setting up FSDP if enable_fsdp is enabled
  115. if train_config.enable_fsdp:
  116. if not train_config.use_peft and train_config.freeze_layers:
  117. freeze_transformer_layers(train_config.num_freeze_layers)
  118. mixed_precision_policy, wrapping_policy = get_policies(fsdp_config, rank)
  119. my_auto_wrapping_policy = fsdp_auto_wrap_policy(model, LlamaDecoderLayer)
  120. model = FSDP(
  121. model,
  122. auto_wrap_policy= my_auto_wrapping_policy if train_config.use_peft else wrapping_policy,
  123. mixed_precision=mixed_precision_policy if not fsdp_config.pure_bf16 else None,
  124. sharding_strategy=fsdp_config.sharding_strategy,
  125. device_id=torch.cuda.current_device(),
  126. limit_all_gathers=True,
  127. )
  128. if fsdp_config.fsdp_activation_checkpointing:
  129. policies.apply_fsdp_checkpointing(model)
  130. elif not train_config.quantization and not train_config.enable_fsdp:
  131. model.to("cuda")
  132. dataset_config = generate_dataset_config(train_config, kwargs)
  133. # Load and preprocess the dataset for training and validation
  134. dataset_train = get_preprocessed_dataset(
  135. tokenizer,
  136. dataset_config,
  137. split="train",
  138. )
  139. if not train_config.enable_fsdp or rank == 0:
  140. print(f"--> Training Set Length = {len(dataset_train)}")
  141. dataset_val = get_preprocessed_dataset(
  142. tokenizer,
  143. dataset_config,
  144. split="test",
  145. )
  146. if not train_config.enable_fsdp or rank == 0:
  147. print(f"--> Validation Set Length = {len(dataset_val)}")
  148. train_sampler = None
  149. val_sampler = None
  150. if train_config.enable_fsdp:
  151. train_sampler = DistributedSampler(
  152. dataset_train,
  153. rank=dist.get_rank(),
  154. num_replicas=dist.get_world_size(),
  155. shuffle=True,
  156. )
  157. if train_config.run_validation:
  158. val_sampler = DistributedSampler(
  159. dataset_val,
  160. rank=dist.get_rank(),
  161. num_replicas=dist.get_world_size(),
  162. )
  163. # Create DataLoaders for the training and validation dataset
  164. train_dataloader = torch.utils.data.DataLoader(
  165. dataset_train,
  166. batch_size=train_config.batch_size_training,
  167. num_workers=train_config.num_workers_dataloader,
  168. pin_memory=True,
  169. sampler=train_sampler if train_sampler else None,
  170. drop_last=True,
  171. collate_fn=default_data_collator,
  172. )
  173. if train_config.run_validation:
  174. eval_dataloader = torch.utils.data.DataLoader(
  175. dataset_val,
  176. batch_size=train_config.val_batch_size,
  177. num_workers=train_config.num_workers_dataloader,
  178. pin_memory=True,
  179. sampler=val_sampler if val_sampler else None,
  180. drop_last=True,
  181. collate_fn=default_data_collator,
  182. )
  183. # Initialize the optimizer and learning rate scheduler
  184. if fsdp_config.pure_bf16 and fsdp_config.optimizer == "anyprecision":
  185. optimizer = AnyPrecisionAdamW(
  186. model.parameters(),
  187. lr=train_config.lr,
  188. momentum_dtype=torch.bfloat16,
  189. variance_dtype=torch.bfloat16,
  190. use_kahan_summation=False,
  191. )
  192. else:
  193. optimizer = optim.AdamW(
  194. model.parameters(),
  195. lr=train_config.lr,
  196. weight_decay=0.0,
  197. )
  198. scheduler = StepLR(optimizer, step_size=1, gamma=train_config.gamma)
  199. # Start the training process
  200. results = train(
  201. model,
  202. train_dataloader,
  203. eval_dataloader,
  204. tokenizer,
  205. optimizer,
  206. scheduler,
  207. gradient_accumulation_steps,
  208. train_config,
  209. fsdp_config if train_config.enable_fsdp else None,
  210. local_rank if train_config.enable_fsdp else None,
  211. rank if train_config.enable_fsdp else None,
  212. )
  213. if not train_config.enable_fsdp or rank==0:
  214. [print(f'Key: {k}, Value: {v}') for k, v in results.items()]
  215. if __name__ == "__main__":
  216. fire.Fire(main)